양자 센서 (Quantum Sensor)
편집하기 (부분)
둘러보기로 이동
검색으로 이동
경고:
로그인하지 않았습니다. 편집을 하면 IP 주소가 공개되게 됩니다.
로그인
하거나
계정을 생성하면
편집자가 사용자 이름으로 기록되고, 다른 장점도 있습니다.
스팸 방지 검사입니다. 이것을 입력하지
마세요
!
===조임 상태 (Squeezed state)=== 물리적인 상태가 위상공간(phase space)에서 특정 방향에 대해서 조여진 형태로 표현될 때, 그 상태를 조임 상태(squeezed state)라 부른다. 가장 대표적인 조임 상태는 조임 진공 상태(squeezed vacuum state)이며, 이를 광자 수 상태 기저들을 이용해 나타내면 다음과 같다 <ref name="Quantum Optics"></ref>. \[\vert \xi \rangle = \frac{1}{\sqrt{\cosh{r}}} \sum_{n=0}^{\infty} (-1)^{n}{\tanh^{n}{r}}e^{in\theta} \frac{\sqrt{(2n)!}}{n! 2^{n}} \vert 2n \rangle \] 위 식에서 알 수 있듯이, 조임 진공 상태는 짝수 광자 수 상태들로 구성되어 있고, 조임 진공 상태의 광자 수 분포는 다음과 같다. \[P_{2n+1} = \vert \langle 2n-1 \vert \xi \rangle \vert^2 =0 \] \[P_{2n} = \vert \langle 2n \vert \xi \rangle \vert^2 = \frac{\tanh^{2n}{r}}{\cosh{r}} \frac{(2n)!}{n! 2^{2n}} \] 조임 진공 상태는 조임 연산자 $$\hat{S}(\xi)= \exp{(\frac{1}{2}\xi^{*} {\hat{a}}^{2} - \frac{1}{2}\xi {\hat{a}}^{\dagger 2}})$$를 사용해서 $$\vert \xi \rangle = \hat{S}(\xi) \vert 0 \rangle$$로 표현되는데 여기서 $$\xi = r e^{i \theta}$$이고, 이는 위상공간에서 원점에 위치한 진공상태를 $$x$$축의 양의 방향으로부터 $$\frac{\theta}{2}$$만큼 회전시킨 방향으로 조인 상태를 뜻한다. (이때 조여진 정도는 $$r$$에 의존한다.) 그래서 조임 진공 상태는 여전히 원점에 위치하지만(즉, $${X}$$와 $${P}$$의 평균은 각각 $$0$$), 조임 연산자에 의해 조여진 만큼 $${X}$$와 $${P}$$의 표준편차에 변화가 생긴다. 조임 위상이 $$\theta = 0$$인 경우에는 $$\Delta {X} = \frac{1}{\sqrt{2}}e^{-r}$$, $$\Delta {P} = \frac{1}{\sqrt{2}}e^{r}$$로 각각 간단하게 표현되며, 이 둘의 곱은 $$\Delta {X} \Delta {P} = \frac{1}{2}$$이다. 즉, 결맞음 상태와 마찬가지로 조임 진공 상태도 $$ {X}$$와 $$ {P}$$에 대한 하이젠베르크 불확정성(uncertainty) 부등식에서 등식을 만족시킨다. 그러나 임의의 방향으로 조여진 경우에는 $$\Delta {X} \Delta {P}$$의 값이 $$\frac{1}{2}$$보다 큰 값을 가질 수도 있는데, 이는 조임 진공 상태의 $${X}$$와 $${P}$$에 대한 불확정도가 조임 방향 $$\theta$$에 따라 달라지기 때문이다. 이 경우에는 $$\frac{\theta}{2}$$만큼 회전된 연산자 $${X}'$$, $${P}'$$에 대한 불확정도를 살펴보면, 여전히 최소 불확정도를 가지는 것을 알 수 있다 <ref name="Quantum Optics in Phase Space"></ref>. 위에서 살펴봤듯이, 조임 진공 상태는 특정 위상 방향에 대한 위상 불확정도가 진공 혹은 결맞음 상태보다 더 작기 때문에, 위상-조임 상태(phase-squeezed state)라 부르기도 한다. 즉, 위상에 대한 불확정도를 결맞음 상태보다 더 줄일 수 있기 때문에, 조임 진공 상태는 빛의 위상 계측 문제에서 매우 유용하게 사용된다. 조임 진공 상태는 자발 매개 하향 변환(spontaneous parametric down-conversion - SPDC)이란 비선형 과정을 통해서 생성할 수 있다 <ref name = "Optimal frequency measurements with maximally correlated states">J. J. Bollinger, W. M. Itano, D. J. Wineland, and D. J. Heinzen, Optimal frequency measurements with maximally correlated states, Physical Review A '''54''', R4649 (1996). doi:[https://doi.org/10.1103/PhysRevA.54.R4649 10.1103/PhysRevA.54.R4649].</ref><ref name = "Extreme quantum entanglement in a superposition of macroscopically distinct states">N. D. Mermin, Extreme quantum entanglement in a superposition of macroscopically distinct states, Physical Review Letters '''65''', 1838 (1990). doi:[https://doi.org/10.1103/PhysRevLett.65.1838 10.1103/PhysRevLett.65.1838].</ref><ref name = "New formalism for two-photon quantum optics. II. Mathematical foundation and compact notation">B. L. Schumaker and C. M. Caves, New formalism for two-photon quantum optics. II. Mathematical foundation and compact notation, Physical Review A '''31''', 3093 (1985). doi:[https://doi.org/10.1103/PhysRevA.31.3093 10.1103/PhysRevA.31.3093].</ref>. SPDC 과정은 빛이 비등방성(anisotropic) 비선형(nonlinear) 매질을 투과할 때 발생하고, 일반적으로 시그널 빔과 아이들러 빔의 쌍으로 출력된다. 빛의 입사 각도에 따라서 출력빔들의 편광 방향이 서로 같은 Type I과 출력빔들의 편광 방향이 서로 다른 Type II로 분류되며, 위에서 소개한 조임 진공 상태는 Type I SPDC 과정을 통해 출력되는 빔들이 모두 같은 파장과 같은 진행 방향을 가지는 완전히 겹쳐있는(degenerate) 경우에 생성되는 빛이다. [[File:Squeezed_State2.jpg|none|thumb|400px|(a) 조임 상태의 광자 수 분포, (b) 위상 공간에서 표현한 조임 상태]]
요약:
한국양자정보학회 위키에서의 모든 기여는 다른 기여자가 편집, 수정, 삭제할 수 있다는 점을 유의해 주세요. 만약 여기에 동의하지 않는다면, 문서를 저장하지 말아 주세요.
또한, 직접 작성했거나 퍼블릭 도메인과 같은 자유 문서에서 가져왔다는 것을 보증해야 합니다(자세한 사항은
한국양자정보학회 위키:저작권
문서를 보세요).
저작권이 있는 내용을 허가 없이 저장하지 마세요!
취소
편집 도움말
(새 창에서 열림)
둘러보기 메뉴
개인 도구
로그인하지 않음
토론
기여
계정 만들기
로그인
이름공간
문서
토론
한국어
보기
읽기
편집
역사 보기
더 보기
검색
둘러보기
대문
최근 바뀜
임의의 문서로
미디어위키 도움말
도구
여기를 가리키는 문서
가리키는 글의 최근 바뀜
특수 문서 목록
문서 정보