양자컴퓨팅 (Quantum Computing)
편집하기 (부분)
둘러보기로 이동
검색으로 이동
경고:
로그인하지 않았습니다. 편집을 하면 IP 주소가 공개되게 됩니다.
로그인
하거나
계정을 생성하면
편집자가 사용자 이름으로 기록되고, 다른 장점도 있습니다.
스팸 방지 검사입니다. 이것을 입력하지
마세요
!
== 개요== 단열 양자 컴퓨팅(Adiabatic quantum computing, AQC)은 계산하고자 하는 바를 양자 시스템의 해밀토니안(Hamiltonian)의 형태로 변환하고 이를 조작하여 결과값을 유도하는 양자 컴퓨팅의 한 형태이다. 게이트 기반 양자 컴퓨팅 모델(양자 회로 모델)과 같이 임의의 연산을 모델링 할 수 있다는 점에서, 즉 범용성(universality)을 보장한다는 점에서 큰 의미를 지닌다.<ref name=Hogg>T. Hogg, Quantum search heuristics, Physical Review A <b>61</b>, 052311 (2000). doi:[https://doi.org/10.1103/PhysRevA.61.052311 10.1103/PhysRevA.61.052311].</ref> 그러나 대개 AQC는 특정 최적화 문제를 빠른 시간 안에 풀기 위한 양자 이점(quantum advantage)의 목적으로 사용되며, 보다 나은 성능을 위해 양자 어닐러(quantum annealer, QA) 혹은 양자 교대 연산자 가설풀이(quantum alternating operator ansatz)의 형태로 변용된다. 단열 양자 컴퓨팅은 Max Born과 Vladimir Fock이 정리한 단열 정리에 이론적 뿌리를 두고 있다<ref name=Born>M. Born & V. Fock, Beweis des Adiabatensatzes, Zeitschrift für Physik <b>51</b>, 165 (1928). doi:[https://doi.org/10.1007/BF01343193 10.1007/BF01343193].</ref>. 단열 정리에 따르면 임의의 양자 시스템에 대해 외부 조건이 충분한 시간 동안 천천히 변화하고, 해밀토니안의 에너지 스펙트럼 간의 차이가 존재할 때(non-degenerate) 해당 양자 시스템의 고유 상태(instantaneous eigenstate)가 지속된다. 해밀토니안이 변화하여 양자 시스템의 상태 공간도 변하지만, 변화가 충분히 천천히 일어난다면 시스템이 이에 적응하여 에너지 상태의 확률 분포도 대응하여 변화한다는 것이다. 단열 정리가 함의하는 바는 주어진 계산(혹은 최적화) 문제를 양자 시스템의 단열 과정(adiabatic process)으로 표현할 수 있다는 것이다. 우선, 이미 잘 알려진 바닥 상태를 지니는 초기 해밀토니안($$H_{\text{init}}$$)을 설정한다. 그리고 주어진 계산 문제의 해를 바닥 상태로 지니는 해밀토니안($$H_{\text{final}})$$을 설정한 뒤, 최종 해밀토니안($$H(t)$$)을 둘의 가중 평균($$H(s)= (1 - s)H_{\text{init}} + sH_{\text{final}}$$)으로 나타낸다. 슈뢰딩거 방정식에 따라 단열 과정을 진행하면 adiabatic 정리에 의해 초기 해밀토니안의 바닥 상태는 최종 해밀토니안의 바닥 상태로 변화하게 된다. 따라서 주어진 계산 문제는 최종 해밀토니안의 바닥 상태를 알아내는 쉬운 문제로 전환된다. \[{H(s)= (1 - s)H_{\text{init}} + sH_{\text{final}}}\] \[{H(0)= H_{\text{init}}}\] \[{H(s)= H_{\text{final}} ~(s는~1에~매우~가까움)}\] 이 때 외부 조건이 얼마나 천천히 변화해야 하는지, 바꿔 말해 AQC가 완료되기까지 요구되는 실행 시간에 대해 정확히 알아내는 것은 어렵다. 나아가 실제 고전 컴퓨터보다 성능 상의 이점([[양자 이점]])이 있는지에 대해서도 알려진 바가 없다. 다만 해밀토니안의 에너지 스펙트럼 간의 차이가 클수록 고유 상태가 다른 상태로 변화할 가능성이 낮아져 빠른 실행이 가능하다. 실행 시간은 해밀토니안의 에너지 스펙트럼 간의 차이의 최소값의 제곱에 반비례하는 것으로 알려져 있다<ref name=Farhi>E. Farhi, J. Goldstone, S. Gutmann & M. Sipser, Quantum Computation by Adiabatic Evolution, [https://arxiv.org/abs/quant-ph/0001106 arXiv:quant-ph/0001106] (2000).</ref>
요약:
한국양자정보학회 위키에서의 모든 기여는 다른 기여자가 편집, 수정, 삭제할 수 있다는 점을 유의해 주세요. 만약 여기에 동의하지 않는다면, 문서를 저장하지 말아 주세요.
또한, 직접 작성했거나 퍼블릭 도메인과 같은 자유 문서에서 가져왔다는 것을 보증해야 합니다(자세한 사항은
한국양자정보학회 위키:저작권
문서를 보세요).
저작권이 있는 내용을 허가 없이 저장하지 마세요!
취소
편집 도움말
(새 창에서 열림)
둘러보기 메뉴
개인 도구
로그인하지 않음
토론
기여
계정 만들기
로그인
이름공간
문서
토론
한국어
보기
읽기
편집
역사 보기
더 보기
검색
둘러보기
대문
최근 바뀜
임의의 문서로
미디어위키 도움말
도구
여기를 가리키는 문서
가리키는 글의 최근 바뀜
특수 문서 목록
문서 정보