양자컴퓨팅 (Quantum Computing)
편집하기 (부분)
둘러보기로 이동
검색으로 이동
경고:
로그인하지 않았습니다. 편집을 하면 IP 주소가 공개되게 됩니다.
로그인
하거나
계정을 생성하면
편집자가 사용자 이름으로 기록되고, 다른 장점도 있습니다.
스팸 방지 검사입니다. 이것을 입력하지
마세요
!
== NISQ 기술 논의의 필요성 == [[File:기술백서 전체수정_22.jpg|thumb|300px|NISQ 시대로의 돌입을 의미하는 53 큐비트 양자 연산을 위한 구글의 Sycamore 프로세서 사진.<ref name=Arute/> ]] 양자 연산은 인수분해 문제와 같이 고전적으로 오래 걸리는 어려운 연산을 가능케 할 것으로 기대되는 양자현상에 기반한 연산 방식이다. [[양자 이점|샘플링 문제]]와 같이 [[복잡도 이론]]에 기반하여 고전적으로는 성취하기 어렵다는 것이 알려진 문제들의 해결 역시 양자 연산을 통하여 가능케 될 것으로 기대된다. 다양한 [[양자 이점|이점]]을 가질 것으로 예상되는 [[양자 컴퓨터]]의 개발이 어려운 이유는 [[양자 역학]]의 근본 성질에 기인한다. 양자 물리계는 본질적으로 측정 시 물리계에 교란이 발생한다. 교란 없는 정보 생성과 가공을 위해서는 물리계가 외부로부터 가능한 고립되어야 한다. 외부로부터의 영향을 최소화하면서, 큐비트를 안정적으로 생성하고 완벽하게 다른 큐비트들과 연결하는 것은 매우 높은 기술적 성숙도를 필요로 한다. 이러한 어려움을 극복하기 위해서는 ‘[[양자 오류 정정|양자 오류 정정(quantum error correction)]]’ 기술이 필요하다.<ref name=Devitt>S. J. Devitt, W. J. Munro, & K. Nemoto, Quantum error correction for beginners, Reports on Progress in Physics <b>76</b>, 076001 (2013). doi:[http://doi.org/10.1088/0034-4885/76/7/076001 10.1088/0034-4885/76/7/076001].</ref> 양자 오류 정정은 높은 [[얽힘 상태]]를 이용하여 외부로부터의 교란을 막는 방식을 활용한다. 보다 구체적으로 양자 오류 정정의 얽힘은 대상 물리계의 일부에 대한 측정 및 연산을 수행할 때 다른 물리계가 교란할 수 없는 방식으로 고안된다. 문제는 양자 오류 정정 구현에 큰 비용이 든다는 데에 있다. 오류 정정 기술을 통해 큐비트들이 연결된 시스템을 만들기 위해서는 많은 수의 추가적인 큐비트가 필요하다. 가령 수천 개의 큐비트를 보호하기 위해서는 수백만개의 추가적인 물리 정정 큐비트가 필요하다. 이에 양자 오류 정정에 기반한 이른바 오류허용(fault-tolerant) [[양자 연산]]은 아직 그 실현 시점이 언제가 될지 불확실한 것으로 보인다.<ref name=Preskill>J. Preskill, Quantum Computing in the NISQ era and beyond, [https://arxiv.org/abs/1801.00862v3 arXiv:1801.00862] (2018).</ref> 이와 같이 매우 큰 규모의 큐비트 시스템을 필요로 하는 오류허용 양자 연산이 어려운 상황에서, 가까운 미래에 현실적으로 실현 가능한 규모의 큐비트 시스템에 대한 논의를 하는 것은 의미 있는 일이다. NISQ(Noisy Intermediate-Scale Quantum) 연산은 이러한 문제의식을 바탕으로 2017년 Preskill이 처음 제안한 개념이다. NISQ에서 ‘intermediate-scale’은 가까운 미래에 실현 가능한 규모의 큐비트 시스템을 지칭한다. Preskill의 예측에 따르면, 50에서 수백 큐비트 규모가 이에 해당한다. 2019년도에는 53큐비트로 구성된 양자 연산 프로세서가 IBM과 구글 양자 연산 연구그룹에서 각각 제안되었다.<ref name=Arute>F. Arute ''et al.'', Quantum supremacy using a programmable superconducting processor, Nature <b>574</b>, 505 (2019). doi:[https://doi.org/10.1038/s41586-019-1666-5 10.1038/s41586-019-1666-5].</ref> 이는 현재 NISQ 양자 연산의 실험적 구현이 시작되는 단계에 있다는 사실을 시사하는 결과이다. 아래 그림 14은 구글에서 개발한 53큐비트 Sycamore 프로세서를 보여준다. NISQ에서 ‘noisy’는 다루는 양자 물리계가 외부 환경의 영향을 받는다는 사실을 강조한다. 현재까지 최선의 [[이온 트랩]]이나 [[초전도 큐비트|초전도 회로]] 방식으로 양자 연산을 구현할 때, 하나의 2-큐비트 게이트 당 0.1% 이상의 오류가 존재한다.<ref name=Ballance>C. J. Ballance, T. P. Harty, N. M. Linke, M. A. Sepiol & D. M. Lucas, High-fidelity quantum logic gates using trapped-ion hyperfine qubits, Physical Review Letters <b>117</b>, 060504 (2016). doi:[https://doi.org/10.1103/PhysRevLett.117.060504 10.1103/PhysRevLett.117.060504].</ref><ref name=Barends>R. Barends ''et al.'', Superconducting quantum circuits at the surface code threshold for fault tolerance, Nature <b>508</b>, 500 (2014). doi:[https://doi.org/10.1038/nature13171 10.1038/nature13171].</ref> 잡음으로 인한 오류는 양자 연산 프로세서의 규모를 키우는데 큰 제약이 된다. 이에 대해서는 수 천 개 큐비트 시스템에서 잡음이 신호를 압도할 것이라는 정성적 예측이 존재한다.<ref name=Preskill />
요약:
한국양자정보학회 위키에서의 모든 기여는 다른 기여자가 편집, 수정, 삭제할 수 있다는 점을 유의해 주세요. 만약 여기에 동의하지 않는다면, 문서를 저장하지 말아 주세요.
또한, 직접 작성했거나 퍼블릭 도메인과 같은 자유 문서에서 가져왔다는 것을 보증해야 합니다(자세한 사항은
한국양자정보학회 위키:저작권
문서를 보세요).
저작권이 있는 내용을 허가 없이 저장하지 마세요!
취소
편집 도움말
(새 창에서 열림)
둘러보기 메뉴
개인 도구
로그인하지 않음
토론
기여
계정 만들기
로그인
이름공간
문서
토론
한국어
보기
읽기
편집
역사 보기
더 보기
검색
둘러보기
대문
최근 바뀜
임의의 문서로
미디어위키 도움말
도구
여기를 가리키는 문서
가리키는 글의 최근 바뀜
특수 문서 목록
문서 정보