양자컴퓨팅 (Quantum Computing)
편집하기 (부분)
둘러보기로 이동
검색으로 이동
경고:
로그인하지 않았습니다. 편집을 하면 IP 주소가 공개되게 됩니다.
로그인
하거나
계정을 생성하면
편집자가 사용자 이름으로 기록되고, 다른 장점도 있습니다.
스팸 방지 검사입니다. 이것을 입력하지
마세요
!
== NISQ 시대 발전될 것으로 예상되는 연산 분야 == NISQ 연산을 통해 유용한 결과를 제공할 것으로 기대되는 연구 분야로, 최적화 분야, [[양자 어닐링 현상]]을 활용한 연산 분야, 잡음-회복(noise-resilient) 회로를 통한 잡음 제어 연구 분야, 양자 기계 학습(machine learning) 분야, 양자 화학 분야 등이 있다. IBM Q에서 발표한 NISQ 시대 양자 연산을 통해 양자 이점(quantum advantage)이 나타날 것으로 기대되는 몇 가지 중요 분야에서 어떠한 방식으로 양자 연산 기술이 발전될 것으로 기대되는 지 아래 항목을 통하여 설명한다. [[File:기술백서 전체수정_23.jpg|thumb|center|500px|IBM Q에서 발표한 NISQ 시대 양자 연산을 통해 양자 이점(quantum advantage)이 나타날 것으로 기대되는 연산 분야. 참고문헌 <ref>IBM Research Insights, ''Coming soon to your business: Quantum computing'' [https://www.ibm.com/thought-leadership/institute-business-value/report/quantumstrategy]</ref>의 그림을 재구성함. ]] === 최적화 분야 === [[양자 컴퓨터]]가 고전 컴퓨터와 다른 방식으로, 고전 컴퓨터가 풀 수 없는 문제를 풀어낼 것은 확실해 보인다. 하지만 양자 컴퓨터의 연산 능력이 무제한적일 것으로 예상되지는 않는다. 예컨대 양자 컴퓨터는 유한한 대상(object) 집합으로부터 최적화된 집합을 구해내는 조합 최적화(combinatorial problem) 문제와 같이 어려운 NP-hard 문제를 풀지는 못할 것이다. 양자 컴퓨터가 이점을 보일 것으로 기대되는 연산 분야는 어려운 NP-hard 문제를 ‘근사적’으로 해결하는 분야이다. 예컨대, $$x$$개의 제한 조건에 대하여 길이 $$l$$의 수열을 구해야 하는 문제라면 양자 연산을 사용하여 근사적으로 가능한 많은 $$x'$$개의 제한 조건을 푸는 수열을 구할 수 있을 것이라 기대된다<ref name=Preskill/>. NP-hard 복잡도와 현재 고전 컴퓨터가 풀 수 있는 문제의 복잡도 격차가 크므로 그 중간 정도의 복잡도 문제를 상기 방식으로 양자 연산을 통해 해결할 것으로 기대할 수 있다. 고전-양자 하이브리드 알고리듬을 이용한 연산 방식은 NISQ 시대에 최적화 분야에서 양자 컴퓨터가 연산 효율을 높일 것으로 기대되는 또 다른 분야 중 하나이다. 이 방식에서 양자 컴퓨터는 상태를 준비하고 측정하는 과정을 담당하며, 고전 연산을 통하여 최적화 결과를 도출한다. 고전 최적화 장치와 양자 연산 장치 사이의 피드백 시스템을 반복하여, 근사적으로 최적화된 결과를 도출할 수 있을 것으로 기대된다. 고전 조합 최적화 문제에 이러한 방식이 적용될 경우 이와 같은 연산 방식은 QAOA(Quantum Approximate Optimization Algorithm)이라 부른다. 해밀토니안의 해를 구하는 등의 [[양자역학]]적 문제를 해결하는 데 사용될 경우 고전-양자 알고리듬은 VQE(Variational Quantum Eigensolver) 등의 이름으로 지칭된다. === 잡음-회복 (Noise-Resilient) 양자 회로 === 오류허용(fault-tolerant) 양자 연산은 고비용 문제로 인하여 NISQ 단계에서는 실현 불가능할 것으로 보인다. 하지만, NISQ 기술은 그 정의상 어떤 방식으로든 잡음을 고려하고, 이를 줄이는 문제를 해결해야 한다. 이러한 목적으로 고려되는 기술로서 잡음-회복 양자 회로가 있다. 모든 게이트에서 단일 결함이 있을 수 있는 일반적인 회로라면 일반적으로 게이트마다 게이트 수의 역수에 비례하는 오류율만 허용된다<ref name=Preskill/>. 이에 반해 잡음-회복 양자 회로의 경우, 연산 능력에 치명적인 오류를 가져올 수 있는 게이트의 수를 제한적으로 둘 수 있다. 잡음-회복 특성은 회로의 깊이(depth)가 작거나, 최종 측정값 당 오류율이 일정하게 주어지는 등의 요인으로 나타난다. 2017년에는, 회로의 규모, 즉 깊이 정도와 상관없는 오류허용에 대해 분석하는 동시에 VQE를 사용하여 특정 해밀토니안의 최저 에너지 상태를 계산한 연구 결과가 보고된 바 있다.<ref name=Kim>I. H. Kim, Noise-resilient preparation of quantum many-body ground states, [https://arxiv.org/abs/1703.00032 arXiv:1703.00032] (2017).</ref> === 양자 인공지능 === 기계 학습(machine learning)은 다양한 분야에 파급력을 갖고 있는 연구 방법론으로, NISQ 시대에 기계 학습이 갖게 될 영향에 대해서 논의하는 것은 자연스러운 일일 것이다. 현재 기술 단계에서는 양자 기계 학습이 고전 기계 학습에 비하여 어느 정도 양자 이점(quantum advantage)을 가져올지 알 수 없지만, 최근 진행되고 있는 양자 기계 학습 연구는 양자 연산의 효율을 높이는 한 방향으로 고려되고 있다.<ref name=Gao>X. Gao, Z. Zhang & L. Duan, An efficient quantum algorithm for generative machine learning, [https://arxiv.org/abs/1711.02038 arXiv:1711.02038] (2017).</ref> 양자 기계 학습이 중요한 연구 방향으로 여겨지는 이유 중 하나는 해당 방식에서 QRAM(Quantum Random Access Memory)의 활용이 가능할 것으로 기대되기 때문이다. 큐비트를 메모리로 사용할 경우 큰 길이의 벡터, 즉 큰 고전 데이터 정보를 적은 수의 큐비트에 저장할 수 있다. 반면, QRAM 기술에도 양자 상태에 정보 입력과 출력시 정보 손실이 일어난다는 난점이 존재한다. 입/출력을 모두 양자 시스템으로 한다면 이런 문제를 피할 수 있을 것으로 예상된다. 이와 같이 입/출력이 모두 양자 시스템으로 주어진 양자 기계 학습 모델은 복잡계 양자 물리 문제를 푸는 등의 양자 고유 문제에 적용되기 용이할 것으로 기대된다<ref name=Preskill/>. [[분류:NISQ 양자컴퓨팅 | ]]
요약:
한국양자정보학회 위키에서의 모든 기여는 다른 기여자가 편집, 수정, 삭제할 수 있다는 점을 유의해 주세요. 만약 여기에 동의하지 않는다면, 문서를 저장하지 말아 주세요.
또한, 직접 작성했거나 퍼블릭 도메인과 같은 자유 문서에서 가져왔다는 것을 보증해야 합니다(자세한 사항은
한국양자정보학회 위키:저작권
문서를 보세요).
저작권이 있는 내용을 허가 없이 저장하지 마세요!
취소
편집 도움말
(새 창에서 열림)
둘러보기 메뉴
개인 도구
로그인하지 않음
토론
기여
계정 만들기
로그인
이름공간
문서
토론
한국어
보기
읽기
편집
역사 보기
더 보기
검색
둘러보기
대문
최근 바뀜
임의의 문서로
미디어위키 도움말
도구
여기를 가리키는 문서
가리키는 글의 최근 바뀜
특수 문서 목록
문서 정보