양자컴퓨팅 (Quantum Computing)
편집하기 (부분)
둘러보기로 이동
검색으로 이동
경고:
로그인하지 않았습니다. 편집을 하면 IP 주소가 공개되게 됩니다.
로그인
하거나
계정을 생성하면
편집자가 사용자 이름으로 기록되고, 다른 장점도 있습니다.
스팸 방지 검사입니다. 이것을 입력하지
마세요
!
=== 최적화 분야 === [[양자 컴퓨터]]가 고전 컴퓨터와 다른 방식으로, 고전 컴퓨터가 풀 수 없는 문제를 풀어낼 것은 확실해 보인다. 하지만 양자 컴퓨터의 연산 능력이 무제한적일 것으로 예상되지는 않는다. 예컨대 양자 컴퓨터는 유한한 대상(object) 집합으로부터 최적화된 집합을 구해내는 조합 최적화(combinatorial problem) 문제와 같이 어려운 NP-hard 문제를 풀지는 못할 것이다. 양자 컴퓨터가 이점을 보일 것으로 기대되는 연산 분야는 어려운 NP-hard 문제를 ‘근사적’으로 해결하는 분야이다. 예컨대, $$x$$개의 제한 조건에 대하여 길이 $$l$$의 수열을 구해야 하는 문제라면 양자 연산을 사용하여 근사적으로 가능한 많은 $$x'$$개의 제한 조건을 푸는 수열을 구할 수 있을 것이라 기대된다<ref name=Preskill/>. NP-hard 복잡도와 현재 고전 컴퓨터가 풀 수 있는 문제의 복잡도 격차가 크므로 그 중간 정도의 복잡도 문제를 상기 방식으로 양자 연산을 통해 해결할 것으로 기대할 수 있다. 고전-양자 하이브리드 알고리듬을 이용한 연산 방식은 NISQ 시대에 최적화 분야에서 양자 컴퓨터가 연산 효율을 높일 것으로 기대되는 또 다른 분야 중 하나이다. 이 방식에서 양자 컴퓨터는 상태를 준비하고 측정하는 과정을 담당하며, 고전 연산을 통하여 최적화 결과를 도출한다. 고전 최적화 장치와 양자 연산 장치 사이의 피드백 시스템을 반복하여, 근사적으로 최적화된 결과를 도출할 수 있을 것으로 기대된다. 고전 조합 최적화 문제에 이러한 방식이 적용될 경우 이와 같은 연산 방식은 QAOA(Quantum Approximate Optimization Algorithm)이라 부른다. 해밀토니안의 해를 구하는 등의 [[양자역학]]적 문제를 해결하는 데 사용될 경우 고전-양자 알고리듬은 VQE(Variational Quantum Eigensolver) 등의 이름으로 지칭된다.
요약:
한국양자정보학회 위키에서의 모든 기여는 다른 기여자가 편집, 수정, 삭제할 수 있다는 점을 유의해 주세요. 만약 여기에 동의하지 않는다면, 문서를 저장하지 말아 주세요.
또한, 직접 작성했거나 퍼블릭 도메인과 같은 자유 문서에서 가져왔다는 것을 보증해야 합니다(자세한 사항은
한국양자정보학회 위키:저작권
문서를 보세요).
저작권이 있는 내용을 허가 없이 저장하지 마세요!
취소
편집 도움말
(새 창에서 열림)
둘러보기 메뉴
개인 도구
로그인하지 않음
토론
기여
계정 만들기
로그인
이름공간
문서
토론
한국어
보기
읽기
편집
역사 보기
더 보기
검색
둘러보기
대문
최근 바뀜
임의의 문서로
미디어위키 도움말
도구
여기를 가리키는 문서
가리키는 글의 최근 바뀜
특수 문서 목록
문서 정보