양자 센서 (Quantum Sensor)
편집하기 (부분)
둘러보기로 이동
검색으로 이동
경고:
로그인하지 않았습니다. 편집을 하면 IP 주소가 공개되게 됩니다.
로그인
하거나
계정을 생성하면
편집자가 사용자 이름으로 기록되고, 다른 장점도 있습니다.
스팸 방지 검사입니다. 이것을 입력하지
마세요
!
==계측 (Metrology) 이란?== 계측이란 우리가 알고자 하는 정보를 얻기 위해 물리량을 측정하고 추정하는 총체적인 과정을 뜻한다. 국제단위계를 정의하고 측정하는 문제를 비롯해서, 자기공명영상 촬영, 바이러스 진단 검사, 군사 목표물 감지, 지질조사, 자율 차 및 드론 센서, 중력파 검출 등과 같이 측정과 관련된 문제들을 전반적으로 다룬다. 양자 계측(quantum metrology)이란 양자 계(quantum system)만이 갖는 성질[예: 양자 얽힘(quantum entanglement), 조임(squeezing), 양자화된 에너지 준위(level), 결맞음(coherence) 등]을 활용하여 고전 계(classical system)로는 달성할 수 없거나 혹은 제한된 조건에서 더 뛰어난 민감도(sensitivity), 정밀도(precision), 분해능(resolution)을 달성하는 방법을 연구하는 분야이다. 양자 계측은 계측 대상과의 상호작용을 겪은 양자 시스템의 변화를 살펴보는 것으로, 그 방식에 따라 편의상 두 가지 종류로 나눌 수 있다. 첫째, 양자 빛을 계측 대상에 입사시키고, 투과 혹은 반사된 빛의 양자 상태의 변화를 살펴보는 방법이다. 둘째, 계측 대상의 영향을 받고 있는 양자 시스템에 고전 빛을 입사시키고, 투과 혹은 반사된 빛의 특성을 살펴보는 방법이다 <ref name = " Quantum-Enhanced Measurements: Beating the Standard Quantum Limit">V. Giovannetti,S. Lloyd and L. Maccone, Quantum-Enhanced Measurements: Beating the Standard Quantum Limit, Science '''306''', 1330 (2004). doi:[https://doi.org/10.1126/science.1104149 10.1126/science.1104149.</ref><ref name = "QUANTUM ESTIMATION FOR QUANTUM TECHNOLOGY">M. G. A. Paris, QUANTUM ESTIMATION FOR QUANTUM TECHNOLOGY, International Journal of Quantum Information '''7''', 125 (2009). doi:[https://doi.org/10.1142/S0219749909004839 10.1142/S0219749909004839].</ref><ref name = "Advances in quantum metrology">V. Giovannetti, S. Lloyd and L. Maccone, Advances in quantum metrology, Nature Photonics '''5''', 222 (2011). doi:[https://doi.org/10.1038/nphoton.2011.35 10.1038/nphoton.2011.35].</ref><ref name = "Quantum metrology from a quantum information science perspective">G. Tóth and I. Apellaniz, Quantum metrology from a quantum information science perspective, Journal of Physics A: Mathematical and Theoretical '''47''', 42 (2014). doi:[https://doi.org/10.1088/1751-8113/47/42/424006 10.1088/1751-8113/47/42/424006].</ref><ref name = "Quantum Limits in Optical Interferometry">R. Demkowicz-Dobrzański, M. Jarzyna and J. Kołodyński, Quantum Limits in Optical Interferometry, Progress in Optics '''60''', 345 (2015). doi:[https://doi.org/10.1016/bs.po.2015.02.003 10.1016/bs.po.2015.02.003].</ref>. [[File:Sensing_Types.jpg|none|thumb|400px|양자 계측의 두 가지 종류]] 양자 계측은 위 분류와 관계없이 일반적으로 네 가지 단계로 이해할 수 있다 <ref name = "Quantum sensing" /><ref name = "Quantum Plasmonic Sensors">C. Lee ''et al.'', Quantum Plasmonic Sensors, Chemical Reviews '''121''', 4743 (2021). doi:[https://doi.org/10.1021/acs.chemrev.0c01028 10.1021/acs.chemrev.0c01028].</ref>. 1) 양자 상태 초기화(initialization): 계측 대상과 상호작용할 양자계의 초기 상태를 적절히 준비한다. 2) 상호작용(interaction): 위에서 준비된 양자 계를 적절한 방법을 통해서 계측 대상과 상호작용시킨다. 이 과정을 통해서 양자 계의 상태 변화가 발생한다. 3) 측정(measurement): 적절한 측정 장치를 사용해서, 양자 계의 상태 변화를 측정한다. 4) 추정(estimation): 적절한 추정자(estimator)를 사용해서, 측정값을 토대로 실제 값을 추정한다. 따라서, 좋은 계측을 하기 위해서는 각 단계들을 최적의 방법으로 수행하는 것이 필요하다 <ref name = "Mathematical Methods of Statistics">H. Cramér, ''Mathematical Methods of Statistics'' (Princeton University Press, 1999).</ref><ref name = "Quantum detection and estimation theory">C. W. Helstrom, ''Quantum detection and estimation theory'' (Academic Press, 1976).</ref><ref name = " Fundamentals of Statistical Signal Processing: Estimation Theory">S. M. Kay, '' Fundamentals of Statistical Signal Processing: Estimation Theory'' (Prentice Hall, 1993).</ref>. 이를테면, 계측에 유용한 양자적 특성을 가진 양자 상태를 준비하거나, 상호작용의 세기를 키우거나, 가장 많은 정보를 줄 수 있는 측정을 수행하거나, 가장 좋은 추정 방법을 사용할 수 있다. 최적의 방법론을 찾고, 실험적으로 구현하는 것이 양자 계측 연구의 핵심이다. [[File:Sensing_Steps.jpg|none|thumb|400px|양자 계측의 일반적인 네 단계]]
요약:
한국양자정보학회 위키에서의 모든 기여는 다른 기여자가 편집, 수정, 삭제할 수 있다는 점을 유의해 주세요. 만약 여기에 동의하지 않는다면, 문서를 저장하지 말아 주세요.
또한, 직접 작성했거나 퍼블릭 도메인과 같은 자유 문서에서 가져왔다는 것을 보증해야 합니다(자세한 사항은
한국양자정보학회 위키:저작권
문서를 보세요).
저작권이 있는 내용을 허가 없이 저장하지 마세요!
취소
편집 도움말
(새 창에서 열림)
둘러보기 메뉴
개인 도구
로그인하지 않음
토론
기여
계정 만들기
로그인
이름공간
문서
토론
한국어
보기
읽기
편집
역사 보기
더 보기
검색
둘러보기
대문
최근 바뀜
임의의 문서로
미디어위키 도움말
도구
여기를 가리키는 문서
가리키는 글의 최근 바뀜
특수 문서 목록
문서 정보