이온 트랩 (Ion Trap)
편집하기 (부분)
둘러보기로 이동
검색으로 이동
경고:
로그인하지 않았습니다. 편집을 하면 IP 주소가 공개되게 됩니다.
로그인
하거나
계정을 생성하면
편집자가 사용자 이름으로 기록되고, 다른 장점도 있습니다.
스팸 방지 검사입니다. 이것을 입력하지
마세요
!
== 이온 트랩을 이용한 양자 컴퓨팅== Radio Frequency(RF) Paul 트랩은 동적인 전자기장을 이용하여, 전하를 띈 입자들을 포획하는 이온 트랩의 방법중의 하나이다. 이는 1980년대부터 이온 트랩에 사용되어 왔는데, 긴 트랩 시간, 트랩 이온의 양자 상태의 긴 [[결맞음]] 시간과 함께 이온 간 강한 쿨롱 상호작용이 가능하고, 레이저 및 마이크로파를 이용한 광학적인 방법으로 개개의 이온의 양자 상태를 제어하고 측정할 수 있다는 장점이 있어 지금까지 이온 트랩 기반의 양자실험에 많이 사용되어 왔다. 1995년, Cirac과 Zoller는 트랩된 이온의 양자 상태와 이온들간의 양자화된 운동(motional) 상태를 결합시켜 두 이온 큐비트들간의 CNOT [[게이트]]를 구현했는데<ref name = "Cirac1995">J. I Cirac and P. Zoller, ''Quantum computations with cold trapped ions,'' Physical Review Letters '''74''', 20 (1995), https://doi.org/10.1103/PhysRevLett.74.4091 </ref> 이후로 CNOT 게이트뿐만 아니라 이온들의 양자 얽힘을 만드는 다양한 [[양자 게이트]]들이 트랩된 이온들의 양자 상태와 운동 상태를 결합시키는 방식으로 구현되었다. 2021년 기준/현재 이온 트랩은 큰 스케일의 양자 컴퓨터를 구현하기 위한 가장 촉망받는 기술 중 하나이다. 이온 트랩 이용한 단일 큐비트 게이트 구현, 두 개의 큐비트 게이트 구현, 큐비트 상태 초기화, 큐비트 상태 측정은 양자오류정정 부호를 사용할 수 있을 만큼 높은 양자 충실도로 가능하다. 그러나, 실용적인 양자컴퓨터를 구현하기 위해서는 큐비트들의 갯수를 늘리면서도 컴퓨팅에 필요한 양자게이트들의 높은 충실도를 유지하는 연구가 필수적이다.<ref name = "Bruzewicz2019">C. D. Bruzewicz, J. Chiaverini, R. McConnell and J. M.Sage, ''Trapped-ion quantum computing: Progress and challenges'', Applied Physics Reviews '''6''', 021314 (2019), https://doi.org/10.1063/1.5088164. </ref>
요약:
한국양자정보학회 위키에서의 모든 기여는 다른 기여자가 편집, 수정, 삭제할 수 있다는 점을 유의해 주세요. 만약 여기에 동의하지 않는다면, 문서를 저장하지 말아 주세요.
또한, 직접 작성했거나 퍼블릭 도메인과 같은 자유 문서에서 가져왔다는 것을 보증해야 합니다(자세한 사항은
한국양자정보학회 위키:저작권
문서를 보세요).
저작권이 있는 내용을 허가 없이 저장하지 마세요!
취소
편집 도움말
(새 창에서 열림)
둘러보기 메뉴
개인 도구
로그인하지 않음
토론
기여
계정 만들기
로그인
이름공간
문서
토론
한국어
보기
읽기
편집
역사 보기
더 보기
검색
둘러보기
대문
최근 바뀜
임의의 문서로
미디어위키 도움말
도구
여기를 가리키는 문서
가리키는 글의 최근 바뀜
특수 문서 목록
문서 정보