중성 원자 기반
편집하기 (부분)
둘러보기로 이동
검색으로 이동
경고:
로그인하지 않았습니다. 편집을 하면 IP 주소가 공개되게 됩니다.
로그인
하거나
계정을 생성하면
편집자가 사용자 이름으로 기록되고, 다른 장점도 있습니다.
스팸 방지 검사입니다. 이것을 입력하지
마세요
!
==냉각 기술== ===레이저 냉각 (Laser cooling)=== 레이저 냉각은 광자의 운동량을 원자에 전달하는 방법을 영리하게 이용하여, 원자의 운동에너지와 그에 따른 원자 구름의 온도를 낮추는 방법을 말한다. 레이저 냉각 기술에는 그 한계에 따라 크게 도플러 냉각 (Doppler cooling,), 그리고 이를 뛰어넘어 원자가 한번의 광자 흡수에서 전달받는 에너지인 되튐 에너지 (recoil energy)수준으로 낮추는 서브-도플러 냉각으로 (sub-Doppler cooling) 나눌 수 있다. 레이저 냉각의 한계는 각각 두 가지 에너지 스케일, 여기 상태의 자연 선폭(에 해당하는 에너지)과 광자의 되튐 에너지가 관여한다. 도플러 냉각의 경우 자연 선폭의 에너지 수준에서 그 한계가 결정되고, 서브-도플러 냉각의 경우 되튐 에너지에 의해 결정된다. 대부분의 레이저 냉각의 경우 여기 상태의 자연 선폭은 약 MHz 단위 되튐 에너지는 kHz 단위로 자연 선폭이 되튐 에너지에 비해 크며, 이러한 상황에서 위와 같은 한계가 결정된다. 도달할 수 있는 온도와 포획할 수 있는 최대 속도가 서로 이율배반(trade-off) 관계에 있기 때문에 도플러 냉각(광-자기 포획)을 통해 많은 원자를 포획한 뒤, 서브-도플러 냉각으로 추가적으로 냉각하는 방식이 일반적이다. ==== 도플러 냉각 ==== 도플러효과를 이용해 레이저 진행방향과 반대방향의 속도를 가진 원자들에게 선택적으로 광자의 운동량을 전달하는 방법이다. 레이저의 에너지(파장 혹은 주파수)를 정지 상태의 원자 전이선에 약간 못미치는 양 만큼 가하면 모자란 에너지를 원자의 운동에너지가 채운다. 이렇게 운동에너지를 채우기 위해서는 레이저의 진행방향과 원자가 마주보는 방향이어야하고, 따라서 원자를 감속하는 쪽으로 광자의 운동량이 전달된다. 속도에 비례하는 감쇠 효과로 광 당밀(optical molasses)이라고도 불린다. 자기장을 이용하면 공간적으로도 국소화 할 수 있고 이를 이용한 것이 광-자기 포획이다. 제이만 감속기 역시 이러한 효과를 활용하여 냉각한다. 도플러 효과를 활용하기 위해서는 원자의 속도를 레이저의 주파수가 분간할 수 있어야 한다. 따라서 자연 선폭이 레이저가 원자의 속도를 분간할 수 있는 한계를 지정하게 되며, 이에 따라 자연 선폭에 해당하는 운동에너지 이하로 냉각할 수 없다. 이를 도플러 한계 (Doppler limit)라고 일컫는다. 알칼리 금속 원자의 경우 이 방법을 이용해 약 수백 mK의 원자들을 약 1 mK 정도로 냉각할 수 있다. 좁은 선폭(100~ 10 kHz)을 가진 알칼리 토금속이나 란타넘족의 원자들을 사용하면 되튐 에너지에 근접한 ==== 서브-도플러 냉각 ==== 서브-도플러 냉각은 양자광학적인 방법을 사용하여 도플러 냉각의 한계 이하로 레이저 냉각하는 방법을 총칭한다. 편광의 경사를 (polarization gradient) 이용해 시시포스 (Sisyphus) 방식으로 냉각하는 방법, 두 가지 색의 레이저를 이용한 gray molasses 및 전자기 유도 투명성 (Electromagnetic induced transparency) 등을 이용하는 방법 등 다양한 방법들이 존재한다. 이러한 방법들은 모두 속력이 0에 가까운 원자들을 양자광학적 맥락의 암흑 상태(Dark state, 특정 조건이 되면 빛과 더이상 상호작용하지 않아 관찰할 수 없는 상태)로 만드는 방법에 의존한다. 서브-도플러 냉각의 한계는 레이저가 전달할 수 있는 운동량의 최소 분해능, 즉 되튐 에너지에서 기인하고 되튐 한계(recoil limit) 라고 부른다. 기발한 여러 방법을 사용하지만, 결국에는 광자를 흡수시키고 방출시키는 과정을 이용하여 냉각을 하는 것이고, 따라서 레이저가 전달할 수 있는 에너지의 최소 분해능 이하로는 냉각이 어려운 것이다. 이러한 방법을 되튐 에너지 정도인 수 μK 정도로 냉각할 수 있다. ===광-자기 포획 (Magneto Optical Trap) === [[File:중성원자 MOT wikipedia.png|none|thumb|323px|광-자기 포획 개요도. (출처 위키피디아) |왼쪽]] [[File:중성원자 MOT사진.png|none|thumb|365px|광-자기 포획한 원자 구름 사진. 진공 중에 원자 구름이 형광을 내고 있다. (출처 KAIST)]] 광-자기 포획(Magneto-optical trap, MOT)은 레이저 냉각을 이용하여 온도가 수 마이크로 켈빈인 중성 원자 샘플을 얻을 수 있는 방법이다. 반-헬름홀츠 코일(Anti-Helmholtz coil)을 이용하여 위치에 따라 다른 세기의 자기장을 생성한다. 이는 원자의 제이만 에너지가 위치에 따라 달라, 동일한 주파수의 냉각 레이저에 대해 다른 흡수율을 갖게 된다. 이는 도플러 효과와 함께 위치에 따라 다른 속도의 원자를 냉각하게 되고, 특히 자기장이 0인 중심 부근에서 가장 낮은 온도의 원자를 포획, 냉각하게 된다. 광자기 포획을 이용하여 낮출 수 있는 온도의 한계를 도플러 한계(Doppler Limit)이라고 하며 원자의 natural linewidth의 절반에 해당하는 에너지가 그 한계이다. ===증발 냉각 (Evaporation cooling)=== [[File:중성원자 증발냉각.png|none|thumb|472px|증발 냉각의 원리. ]] 증발 냉각은 원자 구름을 시스템의 바닥 상태에 가까운 초저온 상태까지 냉각할 수 있는 방법이다. 흔히 커피가 식는 과정과 비슷하다고 말한다. 먼저 원자를 깊이를 바꿀 수 있는 덫에 준비한다. 광집게를 이용해 포획한 경우 레이저의 세기를 AOM을 이용해 낮추는 것이 깊이를 바꾸는 것에 해당한다. 그런 다음, 덫의 깊이를 낮추면 뜨거운 원자들만 선택적으로 잃어버리게 된다. 그 이후, 원자들이 탄성충돌을 하면서 운동에너지를 재분포하여 평형 상태가 될 때 까지 기다리면 전체 계의 온도가 낮아지는 결과를 얻을 수 있다. 실제 실험 상황에서는 일련의 과정이 연속적으로 동시에 일어나며, 이상적인 상황에서 남은 원자의 개수와 시스템의 온도가 스케일링 법칙을 따른다는 것이 알려져 있다<ref>W. Ketterle and N. J. V. Druten, Evaporative Cooling of Trapped Atoms, Advances In Atomic, Molecular, and Optical Physics '''37''', 181 (1996). doi:[https://doi.org/10.1016/S1049-250X(08)60101-9 10.1016/S1049-250X(08)60101-9].</ref>. 실제 실험에서 성공적인 냉각을 위해서는 좋은 충돌 (good collision)이 나쁜 충돌이 (bad collision) 일어나는 속도보다 100배 가량 좋아야 한다고 이야기한다. 좋은 충돌은 원자간의 운동에너지 재분배만 일어나는 탄성 충돌을 이야기하며, 나쁜 충돌은 일반적으로 비탄성 충돌을 말하며 충돌 후 원자를 잃어버리거나 내부 에너지(예를 들면 초미세 구조의 에너지)가 운동에너지로 바뀌는 과정을 말한다. 두 충돌의 비율은 원소의 선택, 원자 상태의 선택, 외부 장에 의한 효과 (페시바흐 공명이나 화학반응) 등에 의해 달라지며, 이를 잘 이해하고 컨트롤 하는 것이 중요하다. <nowiki>초저온 양자 기체 실험에서 사용되는 샘플의 밀도는 원소에 상관없이 일반적으로 대략 $$10^{19}~{m^{-3}}$$ 전후로 결정되는데, 이는 나쁜 충돌의 세기에 의해 결정된다. 해당 밀도에서 약 수십에서 수천 Hz의 충돌 속도를 가지며, 증발 냉각을 위해 퍼텐셜을 수정하는 시간은 이보다 훨씬 느려야 하기 때문에 보통 1초~10초 정도의 냉각 시간이 소요된다. </nowiki>
요약:
한국양자정보학회 위키에서의 모든 기여는 다른 기여자가 편집, 수정, 삭제할 수 있다는 점을 유의해 주세요. 만약 여기에 동의하지 않는다면, 문서를 저장하지 말아 주세요.
또한, 직접 작성했거나 퍼블릭 도메인과 같은 자유 문서에서 가져왔다는 것을 보증해야 합니다(자세한 사항은
한국양자정보학회 위키:저작권
문서를 보세요).
저작권이 있는 내용을 허가 없이 저장하지 마세요!
취소
편집 도움말
(새 창에서 열림)
둘러보기 메뉴
개인 도구
로그인하지 않음
토론
기여
계정 만들기
로그인
이름공간
문서
토론
한국어
보기
읽기
편집
역사 보기
더 보기
검색
둘러보기
대문
최근 바뀜
임의의 문서로
미디어위키 도움말
도구
여기를 가리키는 문서
가리키는 글의 최근 바뀜
특수 문서 목록
문서 정보