양자 센서 (Quantum Sensor)
편집하기 (부분)
둘러보기로 이동
검색으로 이동
경고:
로그인하지 않았습니다. 편집을 하면 IP 주소가 공개되게 됩니다.
로그인
하거나
계정을 생성하면
편집자가 사용자 이름으로 기록되고, 다른 장점도 있습니다.
스팸 방지 검사입니다. 이것을 입력하지
마세요
!
==계측 오차== 계측을 통해 얻어낸 추정(estimation) 값들과 실제(true) 값의 평균적인 차이를 통해서 계측의 성능을 살펴볼 수 있다. 이는 평균 제곱 오차(mean squared error)를 통해 정량화 가능하고, 다음과 같이 정의된다. \[\text{MSE}[\hat{x}]= \langle(x_{\text{est}} - x )^2 \rangle \] 여기서 $$x_{\text{est}}$$ 크기가 $$\nu$$인 표본에 대한 측정 결과들을 토대로 실제 값 $$x$$를 추정 한 값이고 $$\langle \cdots \rangle $$는 크기가 $$\nu$$인 모든 표본에 대한 평균이다. 위 식은 아래와 같이 전개가 가능하며 \[\text{MSE}[\hat{x}]= \langle(x_{\text{est}} - \langle x_{\text{est}} \rangle )^2 \rangle + \langle( \langle x_{\text{est}} \rangle - x )^2 \rangle \] 이때 첫 번째 항의 추정 값의 분산 $$\Delta x^{2}_{\text{est}} $$으로, 다양한 표본에 대한 추정 값들이 서로 얼마나 비슷한 지 나타내는 정밀도(precision)와 관련이 있다. 그리고 두 번째 항은 추정 값이 평균적으로 실제 값과 얼마나 가까운지를 나타내는 정확도(accuracy)와 관련이 있다. 정확도는 계측 장치의 보정과 관련되어 있으며 대개의 경우 $$\langle x_{\text{est}}\rangle=x $$를 만족시키는 비편향 추정자(unbiased estimator)를 사용하기 때문에, 이 경우 $$\text{MSE}[\hat{x}] = \Delta x^{2}_{\text{est}}$$이므로 평균 제곱 오차를 계측의 정밀도로 취급한다. 상황에 따라 $$\Delta x^{2}_{\text{est}}$$를 추정 오차(estimation error), 추정 정밀도(estimation precision), 추정 불확정도(estimation uncertainty)라 부르기도 한다. 그리고 $$\Delta x^{2}_{\text{est}}$$값이 작으면, 실제 값의 변화를 실험적으로 더 민감하게 감지할 수 있기 때문에, $$\Delta x^{2}_{\text{est}}$$를 때로는 민감도(sensitivity)라 부르기도 한다. [[File:Estimated_Dist.jpg|none|thumb|400px|실제값이 $$x$$일 때, 크기가 $$\nu$$인 모든 표본에 대한 추정 값 $$x_\text{est}$$의 확률 분포]]
요약:
한국양자정보학회 위키에서의 모든 기여는 다른 기여자가 편집, 수정, 삭제할 수 있다는 점을 유의해 주세요. 만약 여기에 동의하지 않는다면, 문서를 저장하지 말아 주세요.
또한, 직접 작성했거나 퍼블릭 도메인과 같은 자유 문서에서 가져왔다는 것을 보증해야 합니다(자세한 사항은
한국양자정보학회 위키:저작권
문서를 보세요).
저작권이 있는 내용을 허가 없이 저장하지 마세요!
취소
편집 도움말
(새 창에서 열림)
둘러보기 메뉴
개인 도구
로그인하지 않음
토론
기여
계정 만들기
로그인
이름공간
문서
토론
한국어
보기
읽기
편집
역사 보기
더 보기
검색
둘러보기
대문
최근 바뀜
임의의 문서로
미디어위키 도움말
도구
여기를 가리키는 문서
가리키는 글의 최근 바뀜
특수 문서 목록
문서 정보