위상 양자 컴퓨팅 (Topological Quantum Computing)
편집하기 (부분)
둘러보기로 이동
검색으로 이동
경고:
로그인하지 않았습니다. 편집을 하면 IP 주소가 공개되게 됩니다.
로그인
하거나
계정을 생성하면
편집자가 사용자 이름으로 기록되고, 다른 장점도 있습니다.
스팸 방지 검사입니다. 이것을 입력하지
마세요
!
= 입자 통계와 애니온 (Particle Statistics and Anyons) = [[File:기술백서 전체수정_72_resize.jpg|none|thumb|500px|그림 1. 비가환 애니온의 시간 변화 모식도. 서로 다른 애니온들을 시공간상에서 교환하는 유니타리 연산이 시간 변화를 발생시킨다.<ref>[http://zimp.zju.edu.cn/~xinwan/topo06/ Mini-Workshop on Topological Quantum Computation (zju.edu.cn)]</ref> 참고문헌 [6]의 그림을 재구성함. ]] 3+1 차원의 시공간에 존재하는 모든 입자는 보손(Boson) 또는 페르미온(Fermion)으로 분류될 수 있다. 이는 양자장론으로 증명되는 스핀-통계 정리(spin-statistics theorem)의 결과로 알려져 있다. 입자의 종류는 해당 입자들이 구성하는 파동함수의 대칭성을 결정하여 다체계(many-body)의 특성에 현격한 영향을 미친다. 파동함수의 대칭성이란 구분 불가능(indistinguishable)한 입자를 시공간 상에서 교환(exchange)하였을 때 붙게 되는 위상(phase)을 의미한다. 예를 들어 두 구분 불가능한 입자가 구성하는 파동함수를 $$\psi(r_{1},r_{2})$$, 교환 연산자(exchange operator)를 $$\hat{P}$$라고 하자. 그러면 $$\hat{P}\psi\left( r_{1},r_{2} \right)= \psi\left( r_{2},r_{1} \right) =e^{i θ}\psi \left( r_{1},r_{2} \right)$$가 성립한다. 보손은 $$\theta= 0$$, 페르미온은 $$\theta =\pi$$ 에 해당한다. 그러나 2+1 차원의 시공간에서는 입자 교환에 대해 파동함수가 임의의 $$\theta$$를 가질 수 있음이 알려져 있다. 이 입자들을 보손과 페르미온과 구별하여 애니온이라고 부른다. 입자 종류와 대칭성의 관계를 명확히 정의하기 위해서는 군론과 위상학의 형식적 논리가 요구되지만 여기서는 주요 결과만을 간단하게 정리하도록 한다. $$d$$ 차원에서 구분 불가능한 $$N$$ 개 입자들의 짜임새 공간(configuration space)를 $$M_{d}^{N}$$, 이 공간에서 정의된 기본군(fundamental set)을 $$\pi_{1}(M_{d}^{N})$$로 표기하자. 그러면 다음이 성립한다. \[\pi_{1}(M_{d}^{N}) \simeq \left\{ \begin{matrix} S_{N}\ \ \ (d \geq 3) \\ B_{N}\ \ \ (d= 2) \\ \end{matrix} \right. \] $$S_{N}$$은 순환군(permutation group)을, $$B_{N}$$은 꼬임군(braid group)을 가리키고, $$\simeq$$는 동형 사상(isomorphism)을 의미한다. 2차원 공간에서는 대칭성이 깨지면서 (수학적으로 순환군이 꼬임군으로 대체되고) 물리학적으로 3차원 입자들(보손과 페르미온)이 2차원 입자인 애니온으로 대체 또는 발현하게 된다. 애니온의 시간 변화(time evolution)는 꼬임군이 파동함수에 작용하는 방식에 의해 결정된다.<ref name=Nayak>C. Nayak ''et al.,'' Non-Abelian anyons and toplogical quantum computation, Reviews of Modern Physics '''80''', 1083 (2008) doi:[https://doi.org/10.1103/RevModPhys.80.1083 10.1103/RevModPhys.80.1083].</ref> 이를 수학적인 방식보다는 물리적인 예시를 통해 설명하도록 한다. 애니온은 위상 물질에서 발현되는 준-입자라고 하였는데, 어떤 시스템의 기저 상태를 구성한다고 하자. 기저 상태가 유일하면 가환 애니온(abelian anyon), [축퇴 에너지 준위(degenerate energy level)를 여러 개 가지는 등] 복수 개가 존재하면 비가환 애니온(non-abelian anyon)이라고 한다. 양자 연산에 사용할 수 있는 애니온은 후자에 해당한다. 비가환 애니온의 교환 연산자는 유니타리 행렬로 표기될 수 있는데, 그림1처럼 나타낼 수 있다.<ref>X. Wan, K. Yang, and E.H. Rezayi, Edge Excitations and Non-Abelian Statistics in the Moore-Read State, Physics Review Letter '''97''', 256804 (2006) doi:[https://doi.org/10.1103/PhysRevLett.97.256804 10.1103/PhysRevLett.97.256804].</ref> 가로 축에 놓여 있는 점들은 공간적으로 분리되어 있는 애니온들이고, 세로 축은 시간이다. 시간 변화는 서로 다른 애니온들을 시공간 상에서 교환하는 유니타리 연산자에 의해 발생한다. 그림1과 꼬임군이라는 이름에서 이유를 알 수 있듯이, 이 유니타리 연산을 꼬기(braiding)라고 한다.
요약:
한국양자정보학회 위키에서의 모든 기여는 다른 기여자가 편집, 수정, 삭제할 수 있다는 점을 유의해 주세요. 만약 여기에 동의하지 않는다면, 문서를 저장하지 말아 주세요.
또한, 직접 작성했거나 퍼블릭 도메인과 같은 자유 문서에서 가져왔다는 것을 보증해야 합니다(자세한 사항은
한국양자정보학회 위키:저작권
문서를 보세요).
저작권이 있는 내용을 허가 없이 저장하지 마세요!
취소
편집 도움말
(새 창에서 열림)
둘러보기 메뉴
개인 도구
로그인하지 않음
토론
기여
계정 만들기
로그인
이름공간
문서
토론
한국어
보기
읽기
편집
역사 보기
더 보기
검색
둘러보기
대문
최근 바뀜
임의의 문서로
미디어위키 도움말
도구
여기를 가리키는 문서
가리키는 글의 최근 바뀜
특수 문서 목록
문서 정보