위상 양자 컴퓨팅 (Topological Quantum Computing)
편집하기 (부분)
둘러보기로 이동
검색으로 이동
경고:
로그인하지 않았습니다. 편집을 하면 IP 주소가 공개되게 됩니다.
로그인
하거나
계정을 생성하면
편집자가 사용자 이름으로 기록되고, 다른 장점도 있습니다.
스팸 방지 검사입니다. 이것을 입력하지
마세요
!
= 비가환 애니온과 위상 양자 연산 (Non-Abelian Anyons and Topological Quantum Computation) = [[File:기술백서 전체수정_73_resize.jpg|none|thumb|700px|그림 2. 비가환 애니온들의 에너지 준위 다이어그램. 축퇴(degenerate) 기저 상태들에 의해 생성되는 공간이 위상 양자 연산에 사용되는 힐베르트 공간이다.<ref name="Lahtinen"/> 참고문헌 [8]의 그림을 재구성함.]] 양자 연산은 초기화, 유니타리 변환, 측정이라는 프로토콜을 주로 따르는데,<ref name=DiVincenzo>D. P. DiVincenzo, The physical implementation of quantum computation, Fortschritte Der Physik '''48''', 771 (2000) doi:[https://onlinelibrary.wiley.com/doi/10.1002/1521-3978(200009)48:9/11%3C771::AID-PROP771%3E3.0.CO;2-E 10.1002/1521-3978(200009)48:9/11<771::AID-PROP771>3.0.CO;2-E].</ref> 비가환 애니온 기반의 큐비트 연산 역시 마찬가지다. 애니온의 생성을 통해 양자 상태를 초기화하고, 교환 연산을 통해 유니타리 연산을 하여, 마지막으로 융합 등의 메커니즘으로 측정한다. 여기서 애니온의 생성과 융합에 대한 논의는 생략하도록 한다. [[애니온]] 큐비트 기반의 양자 연산을 위상 양자 연산이라 하는 이유는 비단 이를 기술하는 수학적인 언어가 꼬임군 등의 위상학적 개념에 기반하고 있기 때문만은 아니다. 오히려 애니온이 발현될 수 있는 위상 물질이 다음과 같이 정의되는 물리학적인 의미의 위상론적 상(topological phase)의 특성을 가지기 때문이다. 어떤 물리적 시스템이 위상론적 상에 있다는 것은 낮은 온도, 낮은 에너지, 그리고 긴 파장대에서 관측 가능한 모든 특성들이 시스템이 속한 시공간 다양체(manifold)의 매끄러운(smooth) 변환에 대하여 불변한다는 것을 의미한다.<ref name=Nayak>C. Nayak ''et al.,'' Non-Abelian anyons and toplogical quantum computation, Reviews of Modern Physics, '''80''', 1083 (2008).</ref> 이를 만족하는 물리적 시스템의 예시로는 어떤 것이 있을까? 그림 2에 나와 있는 모델을 통해 이를 집약적으로 설명할 수 있다.<ref name="Lahtinen">V. Lahtinen and J. K. Pachos, A Short Introduction to Topological Quantum Computation, SciPost Physics '''3''', 021 (2017) doi:[https://scipost.org/SciPostPhys.3.3.021 10.21468/SciPostPhys.3.3.021].</ref> 앞서 비가환 애니온은 축퇴 기저 상태를 가진 시스템이라고 했다. 추가적으로, 이 기저 상태들은 에너지 틈(energy gap)을 두고 들뜬 상태(excited states)들과 스펙트럼 상 분리되어 있다. [[큐비트]]와 양자 연산이 정의되는 힐베르트 공간은 바로 이 축퇴 부분 공간(degenerate subspace)이다. 서로 다른 에너지 준위를 가지는 양자 상태를 이용해 $$\left| 0 \right\rangle $$과 $$\left| 1 \right\rangle $$을 구분하는 국소적 큐비트와 달리, 애니온 큐비트들은 축퇴 에너지 수준을 가지기 때문에 동적 위상 어긋남(dynamical dephasing)이 발생하지 않는다. 또, 기저 상태와 여기 상태가 에너지 스펙트럼 상 분리되어 있기 때문에 환경과의 상호작용도 이에 비례하여 억제된다는 특성을 가진다. 또한 불완전한 유니타리 연산으로 인한 오류에 대해서도 덜 민감하다. 애니온 큐비트의 시간 변화는 두 애니온을 공간상에서 교환하는 유니타리 연산으로 발생하고, 이를 꼬기(braiding)이라 한다고 하였다. 그런데 꼬기는 이산적(discrete)이기 때문에 두 애니온은 완전히 교환되거나, 완전히 교환되지 않는다.<ref name=Nayak>C. Nayak ''et al.,'' Non-Abelian anyons and toplogical quantum computation, Reviews of Modern Physics, '''80''', 1083 (2008).</ref> 따라서 불완전한 게이트로 인한 오류가 원천적으로 차단된다. 또한, 개별적인 애니온에 국소적인 섭동이 가해진다고 해도, 완전한 꼬기가 일어나지 않는 이상 전체 양자 상태는 불변하기 때문에 그만큼 환경과의 상호작용에 대해서도 안정적이다. 이러한 이유로 기저 상태의 비가환 애니온들에 의해 정의되는 힐베르트 공간을 보호된 부분 공간(protected subspace)이라고 한다. 양자 위상 연산은 바로 이러한 비국소적 안정성을 성취할 수 있다는 가능성에 힘입어 각광을 받아왔다. 그런데 왜 아직 이를 구현한 하드웨어에 대한 소식이 국소적 양자 컴퓨터에 비해 저조한 것일까? 그것은 애니온을 만드는 것이 매우 어렵기 때문이다.
요약:
한국양자정보학회 위키에서의 모든 기여는 다른 기여자가 편집, 수정, 삭제할 수 있다는 점을 유의해 주세요. 만약 여기에 동의하지 않는다면, 문서를 저장하지 말아 주세요.
또한, 직접 작성했거나 퍼블릭 도메인과 같은 자유 문서에서 가져왔다는 것을 보증해야 합니다(자세한 사항은
한국양자정보학회 위키:저작권
문서를 보세요).
저작권이 있는 내용을 허가 없이 저장하지 마세요!
취소
편집 도움말
(새 창에서 열림)
둘러보기 메뉴
개인 도구
로그인하지 않음
토론
기여
계정 만들기
로그인
이름공간
문서
토론
한국어
보기
읽기
편집
역사 보기
더 보기
검색
둘러보기
대문
최근 바뀜
임의의 문서로
미디어위키 도움말
도구
여기를 가리키는 문서
가리키는 글의 최근 바뀜
특수 문서 목록
문서 정보