양자역학 개요
편집하기 (부분)
둘러보기로 이동
검색으로 이동
경고:
로그인하지 않았습니다. 편집을 하면 IP 주소가 공개되게 됩니다.
로그인
하거나
계정을 생성하면
편집자가 사용자 이름으로 기록되고, 다른 장점도 있습니다.
스팸 방지 검사입니다. 이것을 입력하지
마세요
!
= 벨 부등식 (Bell Inequality)= 벨 부등식은 (모든) 국소 실재론이 반드시 만족해야 하는 조건을 말한다. 벨 부등식의 충족 여부로 국소 실재론과 양자 이론을 판별한다.<ref name=Bell>J. S. Bell, On the Einstein Podolsky Rosen paradox, Physics Physique Fizika '''1''', 195 (1964). doi:[https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 10.1103/PhysicsPhysiqueFizika.1.195]. </ref><ref name=Brunner>N. Brunner ''et al''., Bell nonlocality, Reviews of Modern Physics '''86''', 419 (2014). doi:[https://doi.org/10.1103/RevModPhys.86.419 10.1103/RevModPhys.86.419].</ref> 즉, 국소 실재론은 벨 부등식을 항상 만족하기 때문에, 어떤 실험 결과가 벨 부등식을 위배한다면 이는 국소 실재론이 아닌 양자 이론을 따른다는 것을 의미한다. 벨 부등식을 구성하는 요소는 일반적으로 상관관계(correlation)에 관한 통계 기댓값(또는 확률)들이다. 상관관계에 관한 통계 기댓값은 전체 측정 사건(event)의 결합 확률분포(joint probability distribution)가 결정한다. 따라서 전체 측정 사건에 대한 결합 확률분포를 알면 상관관계를 파악하거나 그 통계 기댓값을 구할 수 있다. 이를 가지고 벨 부등식 위배 여부를 조사한다. 벨 부등식 판별을 위한 시나리오는 다음과 같다. 여러 관찰자가 각자에게 주어진 여러 측정 중 하나를 무작위로 선택하여 측정을 수행한다. 이러한 시행을 반복한다. 충분히 많이 시행한 후, 관찰자들은 서로 모여서, 각자가 얻은 측정 결과값을 모아서 상관관계의 통계 기댓값(또는 확률)을 구하고, 벨 부등식 충족 여부를 조사한다. 예를 들어, 가장 단순한 상황은 두 명의 관찰자 Alice와 Bob이 각자에게 주어진 두 가지 측정 방식 중 하나를 무작위로 선택하여 수행하고, 측정 수행 결과로 얻는 측정값으로 두 가지 가능한 경우이다. 좀 더 구체적으로 살펴보면 다음과 같다. 각 관찰자에게 주어진 두 가지 측정 방식 중 Alice가 선택한 측정 방식을 $$x \in \text{\{}1,2\text{\}},$$ Bob이 선택한 측정 방식을 $$y \in \text{\{}1,2\text{\}}$$로 표기하고, Alice가 측정 후 얻은 측정 결과값을 $$a \in \text{\{} - 1,1\text{\}}$$, Bob의 측정 결과값은 $$b \in \text{\{} - 1,1\text{\}}$$로 표기하자. 이런 상황을 도식적으로 표현하면 아래 그림과 같다. [[File:기술백서 전체수정_1_resize.jpg|none|thumb|450px|벨 시나리오 도식도. 상태생성기로부터 생성된 상태를 Alice와 Bob이 나누어 받은 후 Alice와 Bob은 각각 측정 $$x,y$$를 수행하여 각각 측정값 $$a,b$$를 얻는다. ]] 위 그림은 가장 간단한 벨 시나리오 도식도이다. 이러한 상황에서 측정은 조건부 확률 $$p\left( ab \middle| xy \right)$$로 표현할 수 있다. 이 조건부 확률로 상관관계를 규명하거나 통계 기댓값을 구할 수 있다. 여러 번의 측정을 수행하면, 실험적으로 전체 측정 통계에 대한 실험적 근사치를 얻을 수 있다. 이는 상관관계 $$p\left( ab \middle| xy \right)$$가 실험적으로 측정 가능한 물리량임을 의미한다. 벨 부등식에 특정 상관관계를 대입하여 부등식을 만족한다면, 해당 상관관계는 국소 실재론을 통해 설명 가능하다는 의미에서 국소 상관관계라 할 수 있다. 반면 부등식을 만족하지 않는 상관관계는 비국소 상관관계라 하며, 이렇게 국소 실재론을 통하여 설명할 수 없는 상관관계의 성질을 ‘비국소성(non-locality)’이라 한다. 비국소성의 존재는 해당 물리계에 [[얽힘 상태]]가 존재함을 보장하기 때문에 이를 판별하는 벨 부등식은 [[얽힘 상태]]를 중요하게 활용하는 양자정보이론에서 중요한 의미를 갖는다. 더 나아가 비국소 상관관계가 물리계의 특성을 장치-독립 방식(device-independent scenario)으로 활용 가능함이 증명됨에 따라 [[양자 키 분배]], [[양자 암호 통신#양자 난수 발생기|난수생성]] 등을 목적으로 하는 장치-독립 [[양자 암호 통신|양자정보 프로토콜]]에서 비국소성의 응용 가능성 또한 주목받고 있다.
요약:
한국양자정보학회 위키에서의 모든 기여는 다른 기여자가 편집, 수정, 삭제할 수 있다는 점을 유의해 주세요. 만약 여기에 동의하지 않는다면, 문서를 저장하지 말아 주세요.
또한, 직접 작성했거나 퍼블릭 도메인과 같은 자유 문서에서 가져왔다는 것을 보증해야 합니다(자세한 사항은
한국양자정보학회 위키:저작권
문서를 보세요).
저작권이 있는 내용을 허가 없이 저장하지 마세요!
취소
편집 도움말
(새 창에서 열림)
둘러보기 메뉴
개인 도구
로그인하지 않음
토론
기여
계정 만들기
로그인
이름공간
문서
토론
한국어
보기
읽기
편집
역사 보기
더 보기
검색
둘러보기
대문
최근 바뀜
임의의 문서로
미디어위키 도움말
도구
여기를 가리키는 문서
가리키는 글의 최근 바뀜
특수 문서 목록
문서 정보