양자정보 개요
편집하기 (부분)
둘러보기로 이동
검색으로 이동
경고:
로그인하지 않았습니다. 편집을 하면 IP 주소가 공개되게 됩니다.
로그인
하거나
계정을 생성하면
편집자가 사용자 이름으로 기록되고, 다른 장점도 있습니다.
스팸 방지 검사입니다. 이것을 입력하지
마세요
!
= 양자 이점, 양자 우위 (Quantum Advantage, Quantum Supremacy) = [[File:기술백서 전체수정_2_resize.jpg|thumb|500px|보손 샘플링 모식도. 왼쪽의 빨간 파형으로 표시된 광자가 입력되면, 5개 회로선으로 표시된 5개 광학 모드 네트워크를 통과하여 오른쪽에서 고전적으로는 샘플링하기 어려운 확률분포로 검출된다.<ref name=Harrow /> 참고문헌 [6]의 그림을 재구성함.]] [[File:기술백서 전체수정_3_resize.jpg|thumb|500px|교환 무작위 양자회로 모식도. 왼쪽에서 고정된 양자 상태가 입력되면, 하다마드 게이트 (H), 대각 행렬로 정의된 게이트(T, controlled- Z<sup>m/n</sup>)를 통과하여, 오른쪽에서 최종 측정된다.<ref name=Harrow /> 참고문헌 [6]의 그림을 재구성함.]] 양자 우위(quantum supremacy; QS)는 [[양자 연산]]을 통하여 어떠한 고전 컴퓨터로도 실현 불가능한 연산 능력에 도달한 것을 의미한다. [[양자 컴퓨터]]가 고전 컴퓨터를 능가하는 연산 수행 능력을 보여주는 것을 의미하는 양자 이점(quantum advantage; QA)과 구분이 필요한 경우 구분하여 지칭하도록 한다. 양자 우위를 보이는 것은 물리 이론에 근본적인 중요성을 갖는 것을 넘어서, 실용적 차원에서도 그 결과가 미칠 영향이 큰 연구 분야이다. 양자 우위가 실현될 경우 고전 컴퓨터가 다항 시간 내에 어떠한 물리 과정도 구현할 수 있다는 이른바 ‘확장된 Church-Turing 명제’를 반박하는 결과를 가져올 것이다.<ref name=Harrow>A. W. Harrow and A. Montanaro, Quantum computational supremacy, Nature '''549''', 203 (2017). doi:[https://doi.org/10.1038/nature23458 10.1038/nature23458].</ref> 따라서 [[얽힘]]과 같은 현상을 직접적으로 이용하지 않고 ‘연산’ 차원에서 [[양자역학]]의 중요성을 증명하는 결과를 가져올 것이다. 한 가지 유의할 점은, 우위를 보이는 데에 특별히 실용적으로 유용한 문제를 고려할 필요는 없다는 데 있다. 이에 Preskill이 NISQ(noisy intermediate-scale quantum) 논문에서 제안한 바와 같이 단순히 양자 우위를 보이는 문제뿐 아니라, 실용적으로 쓸모 있는 문제에 대한 연구에 대한 관심도 병행되어야 할 것이다.<ref name = Preskill>J. Preskill, Quantum computing in the NISQ era and beyond, Quantum '''2''', 79 (2018). doi:[https://doi.org/10.22331/q-2018-08-06-79 10.22331/q-2018-08-06-79].</ref> 양자 우위는 단순히 [[양자 컴퓨터]]의 높은 연산 능력을 보여야 하는 것이 아니라 고전 컴퓨터의 연산이 불가능한 영역에서 [[양자 연산]]이 가능함을 보여야 하므로 다른 연산 알고리듬 문제와 구별된다. 고전 연산이 불가능함을 엄밀히 증명하기 위해서는 [[복잡도 이론]]이 필요하나, 현재 단계의 [[복잡도 이론]]으로는 무조건적인 연산 불가능성을 증명할 수는 없으며, 몇 가지 가정하에 불가능성을 증명한다. 이 때, 가능한 한 약한 가정만으로도 이를 보일 수 있는 문제들이 양자 우위를 구현하기 위한 후보가 되고 있다. 예컨대 인수분해 문제, [[양자 시뮬레이터 기술]] 등은 현재 기술 단계에서 고전 컴퓨터로 풀 수 없을 정도로 복잡한 문제라는 사실을 증명하는 것이 쉽지 않으므로 양자 우위 구현 후보가 되지 못한다.<ref name=Harrow /> 인수분해 문제의 경우 1990년에 와서야 현존하는 가장 나은 고전 알고리듬이 제안되었으며, 더 개선될 여지가 있다. [[양자 시뮬레이터]] 또한 시뮬레이터에 영향을 미치는 온도, 커플링 상수 등의 다양한 변수로 인해 복잡도를 계산하기 어려우며, 고전 컴퓨터로 연산 불가능성을 증명하기 어려운 문제가 있다. 따라서 현대 양자 컴퓨터는 보손 샘플링(boson sampling) 또는 무작위 양자 회로(random quantum circuit) 등의 플랫폼을 주로 활용한다. 이 플랫폼들의 연산 목적을 이해하기 위해서는 샘플링이 무엇인지 우선 알아야 한다. 샘플링이란 결정론적으로 답을 구하는 것이 아니라, 주어진 확률분포에서 원하는 샘플을 얻는 것을 말한다. 보손 샘플링에서는 보손 입자인 단일 광자들을 선형 광학 네트워크 장치에 통과시켜 나오는 신호의 확률분포를 샘플링 한다. 보손 샘플링이 되는 확률분포는 고전적으로는 샘플링하기 어렵다는 것이 이른바 ‘다항 위계(polynomial hierachy)’ 가정을 포함한 복잡도 이론을 통해 알려져 있다.<ref name=Harrow /> 무작위 양자 회로는 표준적인 양자 회로와 [[양자 게이트]]를 활용하는 양자 우위 구현 모델이다. 무작위 양자 회로에서는 고정된 양자 입력 상태로부터 측정값들을 샘플링한다. 이때, 측정 전의 양자 게이트들이 서로 교환관계에 있는지 여부를 통해 무작위 양자 회로의 종류를 구분한다. 위의 두 그림은 각각 보손 샘플링과 교환 양자회로의 간단한 예를 보여준다. 2019년 구글에서 무작위 양자 회로 방식을 통해 이차원 평면에 53개의 초전도 [[큐비트]]를 배열하는 실험을 수행한 결과 양자 우위에 해당하는 결과를 최초로 얻음을 주장하였다.<ref name=Arute>F. Arute ''et al''., Quantum supremacy using a programmable superconducting processor, Nature '''574''', 505 (2019). doi:[https://doi.org/10.1038/s41586-019-1666-5 10.1038/s41586-019-1666-5].</ref> 구글 연구진은 제안한 양자 회로를 통해 고전 컴퓨터로 10,000년이 걸리는 문제를 200초 만에 해결하였다고 주장하였다. IBM 연구소 연구진들은 구글에서 고전 컴퓨터 연산 시 충분한 메모리를 고려하지 않았으며, 메모리를 충분히 고려할 시 해당 연산을 수일 내 풀 수 있을 것이라고 이의를 제기한 바 있다.<ref>https://www.ibm.com/blogs/research/2019/10/on-quantum-supremacy</ref> 이는 구글의 결과가 QS에 해당하는 결과라는 데 반론을 제기한 것으로 해석할 수 있다. 구글의 결과가 QS 또는 QA 인지를 논외로 하더라도, 구글에서 50개 이상의 [[큐비트]] 연산을 통해 NISQ 기술 영역에 도입한 연구결과를 도출했다는 데는 이의의 여지가 없을 것으로 보인다.
요약:
한국양자정보학회 위키에서의 모든 기여는 다른 기여자가 편집, 수정, 삭제할 수 있다는 점을 유의해 주세요. 만약 여기에 동의하지 않는다면, 문서를 저장하지 말아 주세요.
또한, 직접 작성했거나 퍼블릭 도메인과 같은 자유 문서에서 가져왔다는 것을 보증해야 합니다(자세한 사항은
한국양자정보학회 위키:저작권
문서를 보세요).
저작권이 있는 내용을 허가 없이 저장하지 마세요!
취소
편집 도움말
(새 창에서 열림)
둘러보기 메뉴
개인 도구
로그인하지 않음
토론
기여
계정 만들기
로그인
이름공간
문서
토론
한국어
보기
읽기
편집
역사 보기
더 보기
검색
둘러보기
대문
최근 바뀜
임의의 문서로
미디어위키 도움말
도구
여기를 가리키는 문서
가리키는 글의 최근 바뀜
특수 문서 목록
문서 정보