양자 센서 (Quantum Sensor)
편집하기 (부분)
둘러보기로 이동
검색으로 이동
경고:
로그인하지 않았습니다. 편집을 하면 IP 주소가 공개되게 됩니다.
로그인
하거나
계정을 생성하면
편집자가 사용자 이름으로 기록되고, 다른 장점도 있습니다.
스팸 방지 검사입니다. 이것을 입력하지
마세요
!
=빛을 사용한 양자 계측= 양자 빛을 계측 대상에 직접 입사시키고, 투과 혹은 반사된 양자 빛의 상태 변화를 측정함으로써 계측 대상의 특성을 분석하는 양자 계측 방법론을 살펴볼 것이다. 위에서 크래머-라오 부등식을 통해서 보았듯이, 고전 계측 대비 양자 이득(quantum advantage)을 얻기 위해서는 주어진 상황에 맞는 최적의 양자 상태와 양자 측정을 사용하는 것이 필요하다. ==여러가지 양자 상태들의 소개== 임의의 양자상태를 생성하는 것은 일반적으로 어렵다 <ref name = "Multiphoton quantum optics and quantum state engineering">F. Dell’Anno, S. D. Siena and F. Illuminati, Multiphoton quantum optics and quantum state engineering, Physics Reports '''428''', 53 (2006). doi:[https://doi.org/10.1016/j.physrep.2006.01.004 10.1016/j.physrep.2006.01.004].</ref>. 아래에서는 양자 광학 센싱에서 사용되는 대표적인 양자 상태들과 생성 방법에 대해서 살펴본다. ===광자 수 상태=== 주어진 모드에서 양자화된 빛의 자유-해밀토니안(Free-Hamiltonian)의 에너지 고유 상태(eigenstate)를 광자 수 상태(photon-number state)로 정의하고, 이에 대응되는 에너지 고윳값(eigenvalue)을 광자 수(photon number)라 부른다 <ref name = "The Quantum Theory of Light, 3rd ed">R. Loudon, ''The Quantum Theory of Light, 3rd ed'' (Oxford University Press, 2000).</ref>. 즉, 광자 수 상태란 빛의 불연속적인 에너지 준위 상태를 뜻하고, 단일 모드(single mode)에서 아래와 같이 표현된다. \[ \vert N \rangle = \frac{({\hat{a}}^{\dagger})^{N}}{\sqrt{N!}} \vert 0 \rangle \] 여기서 $$\vert 0 \rangle$$는 진공 상태이고 $$ \hat{a}^{\dagger} $$는 해당 보존 모드의 생성(creation) 연산자이다. $$N=1$$인 단광자(single photon) 상태 $$\vert 1 \rangle$$는 물리계의 상태가 높은 에너지 준위(level)에서 낮은 에너지 준위로 전이(transition)가 일어날 때, 자발 방출(spontaneous emission) 과정을 통해서 생성될 수 있다 <ref name = "Invited review article: Single-photon sources and detectors">M. D. Eisman ''et al.'', Invited review article: Single-photon sources and detectors, Review of Scientific Instruments '''82''', 071101 (2011). doi:[https://doi.org/10.1063/1.3610677 10.1063/1.3610677].</ref>. 자발 방출을 이용한 단광자 생성은 확률적으로 발생하기 때문에, 단광자가 언제 생성되는지 알 수 없는 단점이 있다. 그래서 아래에서 소개할 쌍둥이-빔(twin-beam) 상태를 사용하는 예고(heralding) 방법이 주로 사용된다 <ref name = "Invited review article: Single-photon sources and detectors"/><ref name = "Experimental realization of a localized one-photon state">C. K. Hong and L. Mandel, Experimental realization of a localized one-photon state, Physical Review Letters '''56''', 58 (1986). doi:[https://doi.org/10.1103/PhysRevLett.56.58 10.1103/PhysRevLett.56.58].</ref><ref name = "Heralded single photon sources: a route towards quantum communication technology and photon standards">S. A. Castelletto and R. E. Scholten, Heralded single photon sources: a route towards quantum communication technology and photon standards, The European Physical Journal-Applied Physics '''41''', 181 (2008). doi:[https://doi.org/10.1051/epjap:2008029 10.1051/epjap:2008029].</ref>. 이는 아이들러 빔(idler beam)에서 단광자가 측정이 되면, 시그널 빔(signal beam)의 상태가 단광자 상태임을 확실히 알 수 있는 광자 수 상관관계를 이용한다. $$N>1$$인 임의의 광자 수 상태의 생성은 일반적으로 매우 어렵다. 단광자를 생성하는 방법과 비슷하게 쌍둥이-빔 상태를 사용해서 $$N$$-광자수 상태를 조건적으로 생성할 수 있지만 <ref name = "Generating antibunched light from the output of a nondegenerate frequency converter">D. Stoler and B. Yurke, Generating antibunched light from the output of a nondegenerate frequency converter, Physical Review A '''34''', 3143 (1986). doi:[https://doi.org/10.1103/PhysRevA.34.3143 10.1103/PhysRevA.34.3143].</ref><ref name = "NJP">NJP 8, 4 (2006)</ref>, $$N$$이 클수록 생성 확률 또는 생성 빈도수가 극도로 낮아지기 때문에 실용성이 떨어진다. 일반적으로, 임의의 광자 수 상태를 생성하기 위해서는 비선형(nonlinear) 유니타리(unitary) 연산이 필수적인데 <ref name = "First-Principles Determination of Chain-Structure Instability in">R. Yu and H. Krakauer, First-Principles Determination of Chain-Structure Instability in KNb $${\mathrm{O}}_{3}$$, Physical Review Letters '''74''', 4067 (1995). doi:[https://doi.org/10.1103/PhysRevLett.74.4067 10.1103/PhysRevLett.74.4067].</ref><ref name = "Quantum state engineering via unitary transformations">A. Vidiella-Barranco and J. A. Roversi, Quantum state engineering via unitary transformations, Physical Review A '''58''', 3349 (1998). doi:[https://doi.org/10.1103/PhysRevA.58.3349 10.1103/PhysRevA.58.3349].</ref>, 원자(atom)-공동(cavity) 상호작용을 이용하거나 <ref name = "Quantum and semiclassical steady states of a kicked cavity mode">P. Filipowicz, J. Javanainen and P. Meystre, Quantum and semiclassical steady states of a kicked cavity mode, Journal of the Optical Society of America B '''3''', 906 (1986). doi:[https://doi.org/10.1364/JOSAB.3.000906 10.1364/JOSAB.3.000906].</ref>, 비선형 물질을 이용하여 <ref name = "Possibility of producing the one-photon state in a kicked cavity with a nonlinear Kerr medium">W. Leoński and R. Tanaś, Possibility of producing the one-photon state in a kicked cavity with a nonlinear Kerr medium, Physical Review A '''49''', R20 (1994). doi:[https://doi.org/10.1103/PhysRevA.49.R20 10.1103/PhysRevA.49.R20].</ref><ref name = "Generation of Fock states and qubits in periodically pulsed nonlinear oscillators">T. V. Gevorgyan, A. R. Shahinyan, and G. Yu. Kryuchkyan, Generation of Fock states and qubits in periodically pulsed nonlinear oscillators, Physical Review A '''85''', 053802 (2012). doi:[https://doi.org/10.1103/PhysRevA.85.053802 10.1103/PhysRevA.85.053802].</ref> 비선형 유니타리 연산을 근사적으로 구현할 수 있는 방법들이 제안되었다. 한편, 비선형 연산은 측정이라는 과정을 통해서도 효과적으로 구현될 수 있는데, 공동(cavity)을 통과한 원자들의 상태 측정을 통해 공동(cavity) 내에 광자 수 상태를 생성하는 방법과 <ref name = "Preparing pure photon number states of the radiation field">B. T. H. Varcoe, S. Brattke, M. Weidinger and H. Walther, Preparing pure photon number states of the radiation field, Nature '''403''', 743 (2000). doi:[https://doi.org/10.1038/35001526 10.1038/35001526].</ref><ref name = "Conditional Large Fock State Preparation and Field State Reconstruction in Cavity QED">M. França Santos, E. Solano, and R. L. de Matos Filho, Conditional Large Fock State Preparation and Field State Reconstruction in Cavity QED, Physical Review Letters '''87''', 093601 (2001). doi:[https://doi.org/10.1103/PhysRevLett.87.093601 10.1103/PhysRevLett.87.093601].</ref><ref name = "Generating and Probing a Two-Photon Fock State with a Single Atom in a Cavity">P. Bertet ''et al.'', Generating and Probing a Two-Photon Fock State with a Single Atom in a Cavity, Physical Review Letters '''88''', 143601 (2002). doi:[https://doi.org/10.1103/PhysRevLett.88.143601 10.1103/PhysRevLett.88.143601].</ref><ref name = "Deterministic Generation of Large Fock States">M. Uria, P. Solano, and C. Hermann-Avigliano, Deterministic Generation of Large Fock States, Physical Review Letters '''125''', 093603 (2020). doi:[https://doi.org/10.1103/PhysRevLett.125.093603 10.1103/PhysRevLett.125.093603].</ref> 비선형 매질로 구성된 간섭계를 통과한 빛의 상태 측정을 통해 간섭계의 다른 출력 모드에서 광자수 상태를 생성하는 방법이 <ref name = "Sculpturing coherent states to get highly excited Fock states for stationary and travelling fields">L. P. A. Maia, B. Baseia, A. T. Avelar and M. C. Malbouisson, Sculpturing coherent states to get highly excited Fock states for stationary and travelling fields, Journal of Optics B: Quantum and Semiclassical Optics '''6''', 351 (2004). doi:[https://doi.org/10.1088/1464-4266/6/7/013 10.1088/1464-4266/6/7/013].</ref><ref name = "Optical Fock-state synthesizer">G. M. D’Ariano, L. Maccone, M. G. A. Paris, and M. F. Sacchi, Optical Fock-state synthesizer, Physical Review A '''61''', 053817 (2000). doi:[https://doi.org/10.1103/PhysRevA.61.053817 10.1103/PhysRevA.61.053817].</ref> 제안되었다. [[File:Photon-number.jpg|none|thumb|400px|광자 수 상태의 에너지 준위]] ===결맞음 상태 (Coherent state)=== 모든 차수($$n=1,2,3, \cdots$$)에 대해 $$n$$차 양자 결맞음 함수(nth-order quantum coherence function)값이 $$1$$인 단일 모드(single-mode) 양자 상태를 결맞음 상태(coherent state)라 부르고, 광자 수 상태 기저들을 이용해 나타내면 다음과 같이 표현된다 <ref name = "Quantum Optics">M. O. Scully and M. S. Zubairy, ''Quantum Optics'' (Cambridge University Press, 2012).</ref>. \[ \vert \alpha \rangle = e^{-\vert \alpha \vert^2 /2} \sum_{n=0}^{\infty} \frac{\alpha^n}{\sqrt{n!}}\vert n\rangle \] 여기서 $$\vert n \rangle$$는 $$n$$-광자 수 상태이고, $$\alpha$$는 $$\alpha = \vert \alpha \vert e^{i \theta} $$와 같이 복소수로 표현된다. 결맞음 상태를 구성하는 광자수의 분포는 다음과 같은 푸아송(Poisson) 분포를 따르는데 \[ P_{n} = \vert \langle n \vert \alpha \rangle\vert^{2} =e^{-\vert \alpha \vert^2} \frac{\vert \alpha \vert^{2n}}{n!} \] 이로부터, 결맞음 상태의 광자 수 평균은 $$\langle \hat{n}\rangle = \vert \alpha \vert^2$$이고, 광자 수 분산은 $$\langle ( \Delta \hat{n})^2 \rangle = \vert \alpha \vert^2$$임을 알 수 있다. 즉, 결맞음 상태의 빛의 세기(intensity)는 $$\vert \alpha \vert^2$$에 비례한다. 이 결맞음 상태를 $$X$$(일반화 위치 좌표)와 $$P$$(일반화 운동량 좌표)로 구성된 위상공간에서 나타낼 수 있는데, 공동(cavity) 내의 빛의 상태의 경우 좌표값 $$X$$와 $$P$$는 전기장과 자기장에 각각 대응되고, 결맞음 상태의 전자기장 평균값은 고전 전자기학에서의 광원이 없는 전자기장과 동일한 꼴을 갖는다. 결맞음 상태는 변위(displacement) 연산자 $$\hat{D}(\alpha) = \exp(\alpha \hat{a}^{\dagger} - \alpha^{*}\hat{a})$$를 이용해서 $$\vert \alpha \rangle = \hat{D}(\alpha) \vert 0 \rangle $$와 같이 표현되는데, 이는 위상공간에서 원점에 위치한 진공 상태를 $$\theta$$방향으로 $$\vert \alpha \vert $$값에 비례하는 길이만큼 이동(displace)시킨 상태를 뜻한다. 적절한 정규화를 통해서 $$X$$와 $$P$$를 대칭적으로 정의하면, 결맞음 상태에 대한 $$X$$와 $$P$$의 표준편차는 $$\Delta X = \Delta P = \frac{1}{\sqrt{2}}$$로 ($$\alpha$$값과 상관 없이) 주어지고, 이 둘의 곱은 $$X$$와 $$P$$에 대한 하이젠베르크 불확정성(uncertainty) 부등식에서의 등식을 만족시킨다. 게다가 $$\Delta X \Delta P$$ 값은 시간에 따라 결맞음 상태의 위상($$\theta = wt$$)이 바뀌는 동안에도 최소 불확정도를 여전히 유지한다. 이를 바꿔서 말하면, 임의로 회전된 좌표축 $$X' = X\cos{\theta} - P\sin{\theta}$$, $$P' = X\sin{\theta} + P\cos{\theta}$$에 대해서도 $$\Delta X' \Delta P'$$값은 항상 동일하다는 뜻이다. 이와 같이, 결맞음 상태는 고전계와 유사한 특성들을 나타내기 때문에, 결맞음 상태를 가장 고전적인 양자 상태라고 부른다 <ref name = "Quantum Optics in Phase Space">P. S. Wolfgang, ''Quantum Optics in Phase Space'' (John Wiley & Sons, 2015).</ref>. 한편, $$\alpha=0$$인 결맞음 상태는 진공 상태이고, 진공 상태의 $$\Delta X' \Delta P'$$ 값은 임의의 결맞음 상태 $$\vert \alpha \rangle$$의 $$\Delta X' \Delta P'$$ 값과 동일하다. 즉, $$\alpha$$ 값과 상관없이, 결맞음 상태는 $$X'$$와 $$P'$$에 대해 항상 최소 불확정도를 갖는다. 빛의 결맞음 상태는 일반적으로 레이저(LASER)를 통해서 생성된다 <ref name = "Optical coherence and quantum optics">L. Mandel and E. Wolf, ''Optical coherence and quantum optics'' (Cambridge University Press, 2013).</ref>. 레이저(LASER), 즉 복사 유도 방출에 의한 광증폭 과정을 통해서 생성되는 광자들은 위상뿐 아니라, 모드 특성(진행 방향, 편광 방향, 파장 등)들이 서로 같은 간섭성이 매우 큰 빛이다. 그리고 레이저를 통해서 생성된 빛의 광자 수의 분포 역시 푸아송 분포를 따른다. [[File:Coherent_State2.jpg|none|thumb|400px|(a) 결맞음 상태의 광자 수 분포, (b) 위상 공간에서 표현한 결맞음 상태]] ===조임 상태 (Squeezed state)=== 물리적인 상태가 위상공간(phase space)에서 특정 방향에 대해서 조여진 형태로 표현될 때, 그 상태를 조임 상태(squeezed state)라 부른다. 가장 대표적인 조임 상태는 조임 진공 상태(squeezed vacuum state)이며, 이를 광자 수 상태 기저들을 이용해 나타내면 다음과 같다 <ref name="Quantum Optics"></ref>. \[\vert \xi \rangle = \frac{1}{\sqrt{\cosh{r}}} \sum_{n=0}^{\infty} (-1)^{n}{\tanh^{n}{r}}e^{in\theta} \frac{\sqrt{(2n)!}}{n! 2^{n}} \vert 2n \rangle \] 위 식에서 알 수 있듯이, 조임 진공 상태는 짝수 광자 수 상태들로 구성되어 있고, 조임 진공 상태의 광자 수 분포는 다음과 같다. \[P_{2n+1} = \vert \langle 2n-1 \vert \xi \rangle \vert^2 =0 \] \[P_{2n} = \vert \langle 2n \vert \xi \rangle \vert^2 = \frac{\tanh^{2n}{r}}{\cosh{r}} \frac{(2n)!}{n! 2^{2n}} \] 조임 진공 상태는 조임 연산자 $$\hat{S}(\xi)= \exp{(\frac{1}{2}\xi^{*} {\hat{a}}^{2} - \frac{1}{2}\xi {\hat{a}}^{\dagger 2}})$$를 사용해서 $$\vert \xi \rangle = \hat{S}(\xi) \vert 0 \rangle$$로 표현되는데 여기서 $$\xi = r e^{i \theta}$$이고, 이는 위상공간에서 원점에 위치한 진공상태를 $$x$$축의 양의 방향으로부터 $$\frac{\theta}{2}$$만큼 회전시킨 방향으로 조인 상태를 뜻한다. (이때 조여진 정도는 $$r$$에 의존한다.) 그래서 조임 진공 상태는 여전히 원점에 위치하지만(즉, $${X}$$와 $${P}$$의 평균은 각각 $$0$$), 조임 연산자에 의해 조여진 만큼 $${X}$$와 $${P}$$의 표준편차에 변화가 생긴다. 조임 위상이 $$\theta = 0$$인 경우에는 $$\Delta {X} = \frac{1}{\sqrt{2}}e^{-r}$$, $$\Delta {P} = \frac{1}{\sqrt{2}}e^{r}$$로 각각 간단하게 표현되며, 이 둘의 곱은 $$\Delta {X} \Delta {P} = \frac{1}{2}$$이다. 즉, 결맞음 상태와 마찬가지로 조임 진공 상태도 $$ {X}$$와 $$ {P}$$에 대한 하이젠베르크 불확정성(uncertainty) 부등식에서 등식을 만족시킨다. 그러나 임의의 방향으로 조여진 경우에는 $$\Delta {X} \Delta {P}$$의 값이 $$\frac{1}{2}$$보다 큰 값을 가질 수도 있는데, 이는 조임 진공 상태의 $${X}$$와 $${P}$$에 대한 불확정도가 조임 방향 $$\theta$$에 따라 달라지기 때문이다. 이 경우에는 $$\frac{\theta}{2}$$만큼 회전된 연산자 $${X}'$$, $${P}'$$에 대한 불확정도를 살펴보면, 여전히 최소 불확정도를 가지는 것을 알 수 있다 <ref name="Quantum Optics in Phase Space"></ref>. 위에서 살펴봤듯이, 조임 진공 상태는 특정 위상 방향에 대한 위상 불확정도가 진공 혹은 결맞음 상태보다 더 작기 때문에, 위상-조임 상태(phase-squeezed state)라 부르기도 한다. 즉, 위상에 대한 불확정도를 결맞음 상태보다 더 줄일 수 있기 때문에, 조임 진공 상태는 빛의 위상 계측 문제에서 매우 유용하게 사용된다. 조임 진공 상태는 자발 매개 하향 변환(spontaneous parametric down-conversion - SPDC)이란 비선형 과정을 통해서 생성할 수 있다 <ref name = "Optimal frequency measurements with maximally correlated states">J. J. Bollinger, W. M. Itano, D. J. Wineland, and D. J. Heinzen, Optimal frequency measurements with maximally correlated states, Physical Review A '''54''', R4649 (1996). doi:[https://doi.org/10.1103/PhysRevA.54.R4649 10.1103/PhysRevA.54.R4649].</ref><ref name = "Extreme quantum entanglement in a superposition of macroscopically distinct states">N. D. Mermin, Extreme quantum entanglement in a superposition of macroscopically distinct states, Physical Review Letters '''65''', 1838 (1990). doi:[https://doi.org/10.1103/PhysRevLett.65.1838 10.1103/PhysRevLett.65.1838].</ref><ref name = "New formalism for two-photon quantum optics. II. Mathematical foundation and compact notation">B. L. Schumaker and C. M. Caves, New formalism for two-photon quantum optics. II. Mathematical foundation and compact notation, Physical Review A '''31''', 3093 (1985). doi:[https://doi.org/10.1103/PhysRevA.31.3093 10.1103/PhysRevA.31.3093].</ref>. SPDC 과정은 빛이 비등방성(anisotropic) 비선형(nonlinear) 매질을 투과할 때 발생하고, 일반적으로 시그널 빔과 아이들러 빔의 쌍으로 출력된다. 빛의 입사 각도에 따라서 출력빔들의 편광 방향이 서로 같은 Type I과 출력빔들의 편광 방향이 서로 다른 Type II로 분류되며, 위에서 소개한 조임 진공 상태는 Type I SPDC 과정을 통해 출력되는 빔들이 모두 같은 파장과 같은 진행 방향을 가지는 완전히 겹쳐있는(degenerate) 경우에 생성되는 빛이다. [[File:Squeezed_State2.jpg|none|thumb|400px|(a) 조임 상태의 광자 수 분포, (b) 위상 공간에서 표현한 조임 상태]] ===NOON 상태 (NOON state)=== $$N$$개의 광자가 두 개의 모드에 걸쳐서 강하게 얽혀있는 다음과 같이 정의된 양자 상태를 NOON 상태라 부른다. \[ \vert N00N \rangle = \frac{1}{\sqrt{2}}(\vert N \rangle_{a}\vert 0 \rangle_{b} + \vert 0 \rangle_{a}\vert N \rangle_{b}) \] NOON 상태는 첫 번째 모드에 $$N$$ 개의 광자가 있는 상태와 두 번째 모드에 $$N$$ 개의 광자가 있는 상태의 양자 중첩 상태이며, 한 모드에서 $$N$$ 개의 광자가 발견되면, 다른 모드는 항상 진공 상태인 특성을 가진 양자 얽힘 상태이다. 그리고 각 모드의 평균 광자 수는 $$N/2$$이고, 전체적인 평균 광자 수는 $$N$$이다. $$N=2$$인 NOON 상태는 홍-오우-만델(Hong-Ou-Mandel) 효과 <ref name = "Measurement of subpicosecond time intervals between two photons by interference">C. K. Hong, Z. Y. Ou and L. Mandel, Measurement of subpicosecond time intervals between two photons by interference, Physical Review Letters '''59''', 2044 (1987). doi:[https://doi.org/10.1103/PhysRevLett.59.2044 10.1103/PhysRevLett.59.2044].</ref> 를 통해서 비교적 쉽게 생성할 수 있지만, $$N>2$$인 NOON 상태는 일반적으로 만들기가 어렵다. 선형광학계를 통과한 빛에 후선택 측정 방법을 적용해서 조건적으로 생성하는 방법이 있고 <ref name = "Creation of large-photon-number path entanglement conditioned on photodetection">P. Kok, H. Lee and J. P. Dowling, Creation of large-photon-number path entanglement conditioned on photodetection, Physical Review A '''65''', 052104 (2002). doi:[https://doi.org/10.1103/PhysRevA.65.052104 10.1103/PhysRevA.65.052104].</ref>, 다른 방법으로는 결맞음 상태와 조임 상태를 빔 분할기(beam splitter)에 입사시켜서 생성하는 방법이 있다 <ref name = "High-NOON States by Mixing Quantum and Classical Light">I. Afek, O. Ambar and Y. Silberberg, High-NOON States by Mixing Quantum and Classical Light, Science '''328''', 879 (2010). doi:[https://doi.org/10.1126/science.1188172 10.1126/science.1188172].</ref>. ===쌍둥이-빔 상태 (Twin-beam state)=== 위에서 소개한 SPDC 과정을 통해서 생성되는 시그널 빔과 아이들러 빔이 서로 다른 단일 모드 특성 (예: 진행 방향, 파장 등)을 가질 때, 그 출력광의 양자 상태는 아래와 같이 표현된다 <ref name = "Observation of Simultaneity in Parametric Production of Optical Photon Pairs">D. C. Burnham and D. L. Weinberg, Observation of Simultaneity in Parametric Production of Optical Photon Pairs, Physical Review Letters '''25''', 84 (1970). doi:[https://doi.org/10.1103/PhysRevLett.25.84 10.1103/PhysRevLett.25.84].</ref><ref name = "Observation of Quantum Noise Reduction on Twin Laser Beams">A. Heidmann ''et al.'', Observation of Quantum Noise Reduction on Twin Laser Beams, Physical Review Letters '''59''', 2555 (1987). doi:[https://doi.org/10.1103/PhysRevLett.59.2555 10.1103/PhysRevLett.59.2555].</ref>. \[\vert \text{TMSV} \rangle = \hat{S}_{2}(\xi) \vert 0,0 \rangle = \exp({\xi}^{*}\hat{a}\hat{b} - \xi \hat{a}^{\dagger} \hat{b}^{\dagger} \vert 0,0 \rangle) \] 여기서 $$\xi = e^{i\theta}$$이고, $$\hat{S}_{2}(\xi)$$는 이중 모드 조임(two-mode squeezing) 연산자이며, 이 상태를 이중 모드 조임 진공(two-mode squeezing) 상태(줄여서 TMSV 상태)라 부른다. 참고로, TMSV 상태는 단일 모드 조임 상태 두 개를 빔 분할기에 동시에 통과시켜서 생성할 수도 있다. 광자 수 상태 기저를 이용하면, TMSV 상태는 아래와 같이 표현되는데, \[\vert \text{TMSV} \rangle = \frac{1}{\cosh{r}} \sum_{n=0}^{\infty} \left(-e^{i\theta} \tanh{r} \right)^{n} \vert n,n \rangle \] 광자수 분포 관점에서 시그널 빔과 아이들러 빔이 동일한 특성을 가지고 있기 때문에, TMSV 상태를 쌍둥이-빔 (twin-beam) 상태 또는 광자쌍들(Photon pairs)이라 부르기도 한다. 쌍둥이-빔 상태는 시그널 빔과 아이들러 빔 간의 광자 수의 완전한 상관관계, 즉 강한 양자 얽힘 특성을 가지고 있어서 <ref name = "Photon-number correlation for quantum enhanced imaging and sensing">[A. Meda ''et al.'', Photon-number correlation for quantum enhanced imaging and sensing, Journal of Optics '''19''', 094002 (2017). doi:[https://doi.org/10.1088/2040-8986/aa7b27 10.1088/2040-8986/aa7b27].</ref>, 이상적인 상황에서 아이들러 빔에서 $$n$$ 개의 광자가 측정이 되면, 시그널 빔에서도 $$n$$ 개의 광자가 측정이 된다. 이를 활용하면, 시그널 빔에 임의의 $$n$$-광자수 상태를 조건적으로 생성할 수 있는데, 단광자 상태를 생성하는데 많이 사용된다. TMSV 상태의 각 단일 모드는 다음과 같은 표현되는 열적 상태(thermal state)와 동일한 광자 수 분포 특성을 갖는다. \[ \rho = \frac{1}{\cosh^{2}{r}} \sum_{n=0}^{\infty} \tanh^{2n}{r} \vert n \rangle \langle n \vert \] 즉, 각 모드의 빛의 세기를 측정하면 열적 분포를 따른다. 반면, 두 모드의 빛의 세기의 차이, 즉 광자 수 차이를 측정하면, 이상적인 상황에서 항상 $$0$$의 값이 측정되고, 측정 노이즈도 $$0$$이며 이는 다음과 같이 표현된다. \[ \langle \text{TMSV} \vert \Delta \left(\hat{n}_b - \hat{n}_a \right)^{2} \vert \text{TMSV} \rangle = 0 \] 여기서 $$\hat{n}_a = \hat{a}^{\dagger} \hat{a} $$와 $$\hat{n}_b = \hat{b}^{\dagger} \hat{b} $$는 각 모드의 광자 수 연산자이다. 이는 두 모드 간의 광자 수끼리 완전한 상관관계를 갖고 있음을 뜻한다 <ref name = "Photon-number correlation for quantum enhanced imaging and sensing"></ref>. ==여러 가지 측정 방법들의 소개== 일반적으로, 임의의 관측 가능량(observable)을 측정(measurement)하는 것을 실제로 구현하기는 어렵다. 아래에서는 양자 광학 센싱에서 사용되는 대표적인 측정 방법들에 대해서 살펴본다. ===단광자 검출 (Single-photon detection)=== 양자 광학 센싱 뿐 아니라 다양한 양자 광학 실험에서 가장 널리 사용되는 측정기는 단광자 한계점(single-photon-threshold) 검출기이다 <ref name = "Invited review article: Single-photon sources and detectors"></ref><ref name = "Single-photon detectors for optical quantum information applications">R. H. Hadfield , Single-photon detectors for optical quantum information applications, Nature Photonics volume '''3''', 696 (2009). doi:[https://doi.org/10.1038/nphoton.2009.230 10.1038/nphoton.2009.230].</ref>. 이를 줄여서 단광자 검출기라 부른다. 단광자 검출기는 해당 모드에서, 단광자 이상의 빛의 에너지와 단광자보다 작은 빛의 에너지, 즉 진공을 정확하게 구분한다. 다시 말해, 광자가 하나라도 있는 경우(‘on’)와 아예 없는 경우(‘off’)를 구분하기에, 관용적으로 on-off 검출기라 부르기도 한다. 보다 일반적으로, 임의의 $$m$$-광자 에너지를 한계점으로 사용하는 검출 장치도 연구되었지만, 다양한 양자 응용기술에서 단광자와 진공을 구분하는 것이 훨씬 더 중요하기 때문에, 대부분 단광자 검출기를 실험에서 사용한다. 임의의 빛에 대해서, 단광자 검출기는 ‘on’이나 ‘off’라는 측정 결과를 주고, 각각의 측정 결과에 대응되는 이상적인 단광자 검출기의 projector는 다음과 같이 표현된다. \[ \hat{\Pi}_{\text{off}} = \vert 0 \rangle \langle 0 \vert \] \[ \hat{\Pi}_{\text{on}} = \mathbb{I} - \vert 0 \rangle \langle 0 \vert \] 이를 사용하면 주어진 양자 상태 $$\rho_{x}$$에 대한 측정 확률 $$p(y \vert x) = \text{Tr} \left[\hat{\Pi}_{y} \rho_{x} \right]$$을 계산할 수 있고, 이에 따라 피셔 정보 값 $$F(x)$$를 구할 수 있다. 위 projector는 이상적인 단광자 검출기에 관한 것이고, 실제 단광자 검출기는 측정 효율(detection efficiency), 다크 카운트(dark count) 등의 현실적 요소들을 포함한 projector들을 사용해서 기술해야 한다 <ref name = "Modified detector tomography technique applied to a superconducting multiphoton nanodetector">J. J. Renema ''et al.'', Modified detector tomography technique applied to a superconducting multiphoton nanodetector, Optics Express '''20''', 2806 (2012). doi:[https://doi.org/10.1364/OE.20.002806 10.1364/OE.20.002806].</ref><ref name = "Semiempirical Modeling of Dark Count Rate and Quantum Efficiency of Superconducting Nanowire Single-Photon Detectors">M. K. Akhlaghi and A. H. Majedi, Semiempirical Modeling of Dark Count Rate and Quantum Efficiency of Superconducting Nanowire Single-Photon Detectors, IEEE Transactions on Applied Superconductivity '''19''', 361 (2009). doi:[https://doi.org/10.1109/TASC.2009.2018846 10.1109/TASC.2009.2018846].</ref>. 단광자 검출기는 크게 두 가지 방법으로 실험에서 사용된다. 첫 번째는 광전류의 증폭 기능이 있는 포토다이오드(photodiode)인 어발란체 포토다이오드(avalanche photodiode - APD)를 사용하는 것이고 <ref name = "Avalanche photodiodes and quenching circuits for single-photon detection">S. Cova ''et al.'', Avalanche photodiodes and quenching circuits for single-photon detection, Applied Optics '''35''', 1956 (1996). doi:[https://doi.org/10.1364/AO.35.001956 10.1364/AO.35.001956].</ref><ref name = "Geiger-mode avalanche photodiodes, history, properties and problems">D. Renker, Geiger-mode avalanche photodiodes, history, properties and problems, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment '''567''', 48 (2005). doi:[https://doi.org/10.1016/j.nima.2006.05.060 10.1016/j.nima.2006.05.060].</ref>, 두 번째는 흡수된 빛에 의해 초전도 상태가 깨지는 현상을 활용한 초전도 나노와이어 단광자 검출기(superconducting nanowire single-photon detector - SNSPD)를 사용하는 것이다<ref name = "Superconducting nanowire single-photon detectors for quantum information">L. You, Superconducting nanowire single-photon detectors for quantum information, Nanophotonics '''9''', 2673 (2020). doi:[https://doi.org/10.1515/nanoph-2020-0186 10.1515/nanoph-2020-0186].</ref><ref name = "Waveguide-integrated superconducting nanowire single-photon detectors">S. Ferrari, C. Schuck and W. Pernice, Waveguide-integrated superconducting nanowire single-photon detectors, Nanophotonics '''7''', 1725 (2018). doi:[https://doi.org/10.1515/nanoph-2018-0059 10.1515/nanoph-2018-0059].</ref><ref name = "Superconducting nanowire single-photon detectors: physics and applications">C. M. Natarajan, Superconducting nanowire single-photon detectors: physics and applications, Superconductor Science and Technology '''25''', 063001 (2012). doi:[https://doi.org/10.1088/0953-2048/25/6/063001 10.1088/0953-2048/25/6/063001].</ref>. ===광자 수 분해 검출 (Photon-number resolving detection)=== 위의 단광자 검출기는 광자의 존재를 명확하게 검출하지만, 광자 수의 분포를 측정할 순 없다. 광자 수 분포를 측정하는 것은 기초연구와 응용연구에서 모두 중요한데, 광자 수의 분포를 측정하는 장치를 광자 수 분해 검출기(photon-number-resolving detector) 또는 광자 수 계수기(photon-number counter)라 부른다. 광자 수 분해 검출기는 광자 수 $$n$$에 대한 측정 결과를 주고, 각 측정 결과에 대한 이상적인 광자 수 분해 검출기의 projector는 다음과 같이 표현된다. \[ \hat{\Pi}_{n} = \vert n \rangle \langle n \vert \] 마찬가지로, 이를 사용하면 주어진 양자 상태 $$\rho_{x}$$에 대한 측정 확률 $$p(y \vert x) = \text{Tr} \left[\hat{\Pi}_{y} \rho_{x} \right]$$과 피셔 정보 값 $$F(x)$$를 모두 구할 수 있고, 현실적인 요소들이 반영된 projector들을 사용하면 실제 광자 수 분해 검출기의 작동을 잘 기술할 수 있다 <ref name = "Tomography of quantum detectors">J. S. Lundeen, Tomography of quantum detectors, Nature Physics '''5''', 27 (2009). doi:[https://doi.org/10.1038/nphys1133 10.1038/nphys1133].</ref>. 양자 광학 실험에서 광자 수 분포는 공간적(spatial)/시간적(temporal) 멀티플렉서(multiplexer)와 여러 개의 단광자 검출기를 사용해서 주로 측정한다 <ref name = "Photon-number-resolving detection using time-multiplexing">D. Achilles ''et al.'', Photon-number-resolving detection using time-multiplexing, Journal of Modern Optics '''51''', 1499 (2003). doi:[https://doi.org/10.1080/09500340408235288 10.1080/09500340408235288].</ref><ref name = "Photon-number resolution using time-multiplexed single-photon detectors">M. J. Fitch, B. C. Jacobs, T. B. Pittman, and J. D. Franson, Photon-number resolution using time-multiplexed single-photon detectors, Physical Review A '''68''', 043814 (2003). doi:[https://doi.org/10.1103/PhysRevA.68.043814 10.1103/PhysRevA.68.043814].</ref>. 멀티플렉서란 입사된 빛을 $$M$$ 개의 공간 모드나 시간 모드로 나눠주는 역할을 하는데, 이때 입사된 빛의 평균 에너지보다 $$M$$이 충분히 크다면, 멀티플렉서의 각 출력 포트에서 두 개 이상의 광자가 발견될 확률은 거의 0에 가깝다. 따라서, 단광자 검출기를 이용해서 광자가 발견되는 출력 포트의 개수를 세면, 입사된 빛의 광자 수를 근사적으로 잘 측정할 수 있다. 한편, 최근에는 흡수된 광자 수에 따른 온도변화를 측정하는 Transition edge sensor에 대한 연구가 활발히 진행되고 있다 <ref name = "Noise-free high-efficiency photon-number-resolving detectors">D. Rosenberg, A. E. Lita, A. J. Miller, and S. W. Nam, Noise-free high-efficiency photon-number-resolving detectors, Physical Review A '''71''', 061803 (2005). doi:[https://doi.org/10.1103/PhysRevA.71.061803 10.1103/PhysRevA.71.061803].</ref><ref name = "High quantum efficiency photon-number-resolving detector for photonic on-chip information processing">B. Calkins ''et al.'', High quantum efficiency photon-number-resolving detector for photonic on-chip information processing, Optics Express '''21''', 22657 (2013). doi:[https://doi.org/10.1364/OE.21.022657 10.1364/OE.21.022657].</ref><ref name = "Titanium-based transition-edge photon number resolving detector with 98% detection efficiency with index-matched small-gap fiber coupling">D. Fukuda ''et al.'', Titanium-based transition-edge photon number resolving detector with 98% detection efficiency with index-matched small-gap fiber coupling, Optics Express '''19''', 870 (2011). doi:[https://doi.org/10.1364/OE.19.000870 10.1364/OE.19.000870].</ref><ref name = "Quantum characterization of superconducting photon counters">G. Brida ''et al.'', Quantum characterization of superconducting photon counters, New Journal of Physics '''14''', 085001 (2012). doi:[https://doi.org/10.1088/1367-2630/14/8/085001 10.1088/1367-2630/14/8/085001].</ref>. ===호모다인 검출 (Homodyne detection)=== 빛의 위상(phase)은 이미 위상을 알고 있는 다른 빛과 간섭시킴으로써 측정할 수 있다 <ref name = "A Guide to Experiments in Quantum Optics">H-A. Bachor and T. C. Ralph, ''A Guide to Experiments in Quantum Optics'' (John Wiley & Sons, 2019).</ref>. 대표적인 방법은 통신 기술에서 많이 활용되고 있는 호모다인(homodyne) 간섭계 또는 호모다인 검출이란 방법을 사용하는 것이다 <ref name = "Noise in homodyne and heterodyne detection">H. P. Yuen and V. W. S. Chan, Noise in homodyne and heterodyne detection, Optics Letters '''8''', 177 (1983). doi:[https://doi.org/10.1364/OL.8.000177 10.1364/OL.8.000177].</ref><ref name = "Homodyne detection of the density matrix of the radiation field">G. M. D’Ariano, U. Leonhardt and H. Paul, Homodyne detection of the density matrix of the radiation field, Physical Review A '''52''', R1801 (1995). doi:[https://doi.org/10.1103/PhysRevA.52.R1801 10.1103/PhysRevA.52.R1801].</ref>. 양자 광학에서 사용되는 이상적인 호모다인 검출 projector는 다음과 같이 표현된다. \[ \hat{\Pi}_{X(\phi)} = \vert X(\phi) \rangle \langle X(\phi) \vert \] 여기서 측정값 $$X(\phi)$$는 위상공간에서 $$\phi$$만큼 회전된 $$X$$축의 좌표값에 대응이 되고, $$-\infty$$에서 $$\infty$$까지 연속적인 값을 갖는다. 주어진 $$\phi$$에 대해서 호모다인 검출을 하면, 실수값 $$X(\phi)$$에 대한 확률 분포 $$ p \left(X(\phi)\vert x \right) $$를 얻을 수 있다. $$\phi$$를 바꿔가면서 호모다인 검출을 수행할 경우, 위상값 $$\{ \phi_{1}, \phi_{2}, \phi_{3}, \cdots \}$$ 각각에 대한 확률 분포$$\{ p\left(X(\phi_{1})\vert x\right), p\left(X(\phi_{2})\vert x\right), p\left(X(\phi_{3})\vert x\right), \cdots \} $$를 얻을 수 있고, 이를 활용하면 위상공간에서 준-확률 분포(quasi-probability distribution)로 빛의 양자 상태를 나타낼 수 있다 <ref name = "Quantum Optics in Phase Space"></ref>. ==양자 광학 계측의 예시== 레이저 빛을 사용하는 고전 광학 계측의 정밀도(precision), 민감도(sensitivity), 분해능(resolution)은 입사광의 평균 세기(Intensity)에 따라서 증가한다. 이는 일반적인 레이저 빛의 신호 대 잡음비(signal-to-noise ratio)가 빛의 세기의 제곱근에 반비례하기 때문이다. 그러나 계측 성능을 높이기 위해서 빛의 세기를 무한정 증가시킬 수는 없다. 왜냐하면, 강한 빛에 의해서 측정 시료나 광학 장비들을 구성하는 물질의 분자들이 파괴될 수 있기 때문이다. 따라서, 제한된 빛의 세기, 즉 계측 대상을 통과하는 빛의 평균 광자 수가 $$N$$일 때, 계측 성능을 최대한 높일 수 있는 방법을 찾는 것이 필요하다. 이를 위해, 양자빛을 사용하는 다양한 계측 방법들이 연구 중이며, 고전 빛, 특별히 결맞음 상태를 사용하는 계측 방법에 비해 얼마나 큰 양자 효능(quantum enhancement)을 얻을 수 있는지 정량적으로 분석한다. 빛은 단일 모드 근사 하에서 주어진 시간에 대해, 진폭과 위상, 이 두 개의 정준 변수(canonical variable)들로 잘 기술할 수 있다. 이에 따라, 광학 계측은 (a) 빛의 세기 매개변수 계측과 (b) 빛의 위상 매개변수 계측으로 크게 나눌 수 있다. 더 복잡한 형태의 광학 계측 문제들도, 이 두 가지 분류에 대한 이해를 바탕으로 분석할 수 있다. ===빛의 세기 매개변수의 계측=== [[File:Intensity_Sensing.jpg|none|thumb|400px|빛의 세기 매개변수 계측 모델]] 빛이 측정 시료(analyte)를 통과할 때, 시료의 특성에 따라 빛의 투과율(transmittance) 또는 반사율(reflectance)이 달라지는 경우를 생각해 보자. 이 경우, 투과율 또는 반사율을 측정하면 시료의 특성을 분석 및 추정할 수 있는데, 계측 성능은 입사광의 상태와 검출기의 종류에 따라서 달라진다. 빛의 세기 매개변수 계측은 빔 분할기의 투과율 $$T$$를 추정하는 문제로 모델링(modeling) 할 수 있다. 다른 종류의 에너지 손실이나 추가적인 빛의 유입이 없는 경우, 투과율 $$T$$를 추정하기 위해서는 빛을 투과시킨 후에 투과된 빛의 세기($$I_{\text{out}}$$)와 입사된 빛의 세기($$I_{\text{in}}$$)의 비율로 투과율을 간단히 추정할 수 있다. 일반적으로 측정을 $$\nu$$번 반복하고, $$\nu$$번 반복에 대한 평균 값($$\bar{I}_{\text{out}}$$)을 사용해서 투과율을 추정한다. 이 경우, 추정자는 $$T_{\text{est}}=\bar{I}_{\text{out}}/I_{\text{in}}$$으로 표현되고, 빛의 세기 측정은 광자 수 분해 검출 방법과 동일하다 <ref name = "Quantum Plasmonic Sensors"></ref><ref name = "Absorption spectroscopy at the ultimate quantum limit from single-photon states">R. Whittaker ''et al.'', Absorption spectroscopy at the ultimate quantum limit from single-photon states, New Journal of Physics '''19''', 023013 (2017). doi:[https://doi.org/10.1088/1367-2630/aa5512 10.1088/1367-2630/aa5512].</ref>. 레이저 빛, 즉 결맞음 상태 $$\vert \alpha \rangle$$를 입사광으로 사용하는 경우, 투과율의 추정 값 계측 오차 $$\Delta T$$는 다음과 같다. \[\Delta T_{\vert \alpha \rangle}=\sqrt{\frac{T}{\nu N}} \] 여기서, $$T$$는 투과율의 실제 값이고, $$\nu$$는 반복 측정 횟수, 즉 표본의 크기이고, $$N$$은 결맞음 상태의 평균 광자 수이다. 이 계측 오차는 $$\sqrt{N}$$에 반비례하는데, 이는 투과된 빛의 광자 수 (또는 빛의 세기) 분포가 Poisson 분포를 따르기 때문이다. 그래서 이를 산탄-잡음 한계(shot-noise limit)라 부르기도 한다. 위의 빔 분할기 투과율 추정 문제에서는 빔 분할기를 통과하는 빛의 세기 변화를 정밀하게 측정해야 한다. 이 경우, 빛의 세기에 대한 불확정도가 가장 작은 빛의 상태를 사용하는 것이 가장 좋다. 그 상태는 바로, 광자 수 상태 $$\vert N \rangle$$이며, 빛의 세기에 대한 불확정도가 $$0$$임을 쉽게 확인할 수 있다. 광자 수 상태를 입사광으로 사용하는 경우, 투과율 추정의 계측 오차 $$\Delta T$$는 다음과 같다. \[\Delta T_{\vert N \rangle}=\sqrt{\frac{T(1-T)}{\nu N}} \] 여기서 $$\Delta T_{\vert N \rangle}$$는 $$\Delta T_{\vert \alpha \rangle}$$에 비해 항상 작다는 것을 확인할 수 있고, $$\Delta T_{\vert N \rangle}$$는 투과율 추정 문제에서 계측 오차의 궁극적 양자 한계로 알려져 있다 <ref name = "Optimal estimation of losses at the ultimate quantum limit with non-Gaussian states">G. Adesso ''et al.'', Optimal estimation of losses at the ultimate quantum limit with non-Gaussian states, Physical Review A '''79''', 040305 (2009). doi:[https://doi.org/10.1103/PhysRevA.79.040305 10.1103/PhysRevA.79.040305].</ref>. 한편, 임의의 광자 수 상태 $$\vert N \rangle$$을 생성하는 것은 매우 어렵기 때문에, 광자 수 상태 $$\vert N \rangle$$을 사용해서 계측 오차 $$\Delta T_{\vert N \rangle}$$에 도달하는 것은 실험적으로 구현하기 어렵다. 그러나 단광자 상태 $$\vert 1 \rangle$$를 이용해서 $$\nu N$$번 반복 측정을 하면, 광자 수 상태 $$\vert N \rangle$$을 $$\nu$$번 반복 측정한 것과 동일한 계측 오차 $$\Delta T_{\vert N \rangle}$$에 도달할 수 있다. 그래서 실제 실험에서는 단광자가 많이 활용된다. 예를 들면, 유기 염료 분자(organic dye molecule)인 디벤잔탄트렌(dibenzanthanthrene-DBATT)이나 <ref name = "Single-Photon Spectroscopy of a Single Molecule">Y. L. A. Rezus ''et al.'', Single-Photon Spectroscopy of a Single Molecule, Physical Review Letters '''108''', 093601 (2012). doi:[https://doi.org/10.1103/PhysRevLett.108.093601 10.1103/PhysRevLett.108.093601].</ref>, 헤모글로빈(haemoglobin)을 분석하는데 <ref name = "Absorption spectroscopy at the ultimate quantum limit from single-photon states">R. Whittaker ''et al.'', Absorption spectroscopy at the ultimate quantum limit from single-photon states, New Journal of Physics '''19''', 023013 (2017). doi:[https://doi.org/ 10.1088/1367-2630/aa5512 10.1088/1367-2630/aa5512].</ref>, 단광자 상태가 사용되었다. 그리고 카이럴(chiral) 매질에서 발생하는 광학 활성(optical activity)을 측정하거나 <ref name = "Experimental quantum polarimetry using heralded single photons">S. J. Yoon ''et al.'', Experimental quantum polarimetry using heralded single photons, Metrologia '''57''', 045008 (2020). doi:[https://doi.org/10.1088/1681-7575/ab8801 10.1088/1681-7575/ab8801].</ref>, 혈청 알부민 단백질 수용액의 농도를 측정하는 플라즈모닉 센서에도 <ref name = "Quantum plasmonic sensing using single photons">J. S. Lee, Quantum plasmonic sensing using single photons, Optics Express '''26''', 29272 (2018). doi:[https://doi.org/10.1364/OE.26.029272 10.1364/OE.26.029272].</ref> 단광자 양자 계측 방법이 사용되었다. 최근에는 한 개 이상의 빛의 세기 값들을 계측하는 문제에 대한 궁극적 양자한계와 최적의 양자 계측 방법론이 밝혀졌으며 <ref name = "Quantum-Limited Loss Sensing: Multiparameter Estimation and Bures Distance between Loss Channels">R. Nair, Quantum-Limited Loss Sensing: Multiparameter Estimation and Bures Distance between Loss Channels, Physical Review Letters '''121''', 230801 (2018). doi:[https://doi.org/10.1103/PhysRevLett.121.230801 10.1103/PhysRevLett.121.230801].</ref>, 카이럴 매질에서 발생하는 원평광 이색성(circular dichorism)을 측정하는 양자 계측 방법도 <ref name = "Optimal circular dichroism sensing with quantum light: Multi-parameter estimation approach">C. Ioannou ''et al.'', Optimal circular dichroism sensing with quantum light: Multi-parameter estimation approach, [https://arxiv.org/abs/2008.03888 arXiv:2008.03888].</ref> 제안되었다. [[File:MSE_Intensity.jpg|none|thumb|400px|빛의 세기 매개변수의 실제값이 $$T$$일 때, 결맞음 상태와 광자수 상태를 사용해서 도달할 수 있는 계측 정밀도]] 위와 같이 빛의 세기의 불확정도가 $$0$$인 광자 수 상태를 사용해서 빛의 세기 매개변수를 정밀하게 계측하는 것 외에도, 빛의 세기 차이의 불확정도가 $$0$$인 상태, 즉 쌍둥이-빔(twin-beam) 상태를 사용하는 계측 방법도 있다. 계측 대상을 통과시킨 시그널 빔의 빛의 세기와 그대로 보존해둔 아이들러 빔의 빛의 세기 차이를 측정하는 것이다. 빛의 세기 차이를 측정하는 방법은 공통적으로 존재하는 추가적인 잡음(common excess noise)도 제거할 수 있다는 장점이 있다. 이와 같은 쌍둥이-빔 상태를 사용하는 빛의 세기 매개변수 계측 방법은 특히 양자 이미징(quantum imaging)에서 많이 사용된다 <ref name = "Experimental realization of sub-shot-noise quantum imaging">G. Brida, M. Genovese and I. R. Berchera, Experimental realization of sub-shot-noise quantum imaging, Nature Photonics '''4''', 227 (2010). doi:[https://doi.org/10.1038/nphoton.2010.29 10.1038/nphoton.2010.29].</ref>. ===빛의 위상 매개변수(Phase parameter)의 계측=== [[File:Phase_Sensing.jpg|none|thumb|400px|위상 매개변수 계측 모델]] 빛이 측정 시료(analyte)를 통과할 때, 시료의 특성에 따라 빛의 위상(phase)이 달라지는 경우를 생각해 보자. 이 경우, 위상의 변화를 측정하면 시료의 특성을 분석 및 추정할 수 있는데, 빛의 위상은 일반적으로 간섭계를 사용해서 측정할 수 있다. 대표적인 예로는 중력파에 의해 요동치는 간섭 경로를 지나온 빛의 위상을 측정하는 중력파 검출기(즉, 마이켈슨 간섭계)가 있다 <ref name = "Quantum-mechanical noise in an interferometer">C. M. Caves, Quantum-mechanical noise in an interferometer, Physical Review D '''23''', 1693 (1981). doi:[https://doi.org/10.1103/PhysRevD.23.1693 10.1103/PhysRevD.23.1693].</ref>. 가장 간단하면서도 일반적인 예제인 마흐-젠더(Mach-Zehnder) 간섭계에서 위상차 $$\phi$$를 추정하는 문제를 생각해 보자. 빛의 세기 매개변수 계측 문제와는 달리 최적의 추정자와 최적의 검출기 선택이 단순하지 않기 때문에, QCRB를 살펴봄으로써 계측 오차의 근본적인 한계를 비교할 수 있다. 레이저 빛, 즉 결맞음 상태 $$\vert \alpha \rangle$$가 마흐-젠더 간섭계의 첫번째 입구로 입사되고, 두번째 입구로는 아무것도 입사되지 않는 경우를 생각해보자. 이 입력 상태에 대한 위상 계측 오차 $$\Delta \phi$$는 QCRB를 통해서 다음과 같다. \[\Delta \phi = \frac{1}{\sqrt{\nu N}} \] 여기서, $$N = \vert\alpha\vert^2$$는 간섭계에 입사되는 평균 광자 수 이다. 이 계측 오차는 빛의 세기의 오차는 빛의 세기의 제곱근 즉,$$\sqrt{N}$$에 반비례하는데, 이를 주어진 간섭계에서의 표준 양자 한계(standard quantum limit)라 부른다. C. Caves는 위의 표준 양자 한계를 뛰어넘을 수 있는 방안으로, 결맞음 상태 $$\vert \alpha \rangle$$와 조임 상태 $$\vert \xi \rangle$$를 간섭계의 각각의 입구에 입사시키는 방법을 1981년에 제안하였다 <ref name = "Quantum-mechanical noise in an interferometer"></ref>. 만약, 결맞음 상태와 조임 상태가 비슷한 밝기를 가진다면 (즉, $$\vert\alpha\vert^2 \simeq \sinh^{2}r \simeq N/2$$), 입사광들의 전체 평균 광자 수 $$N$$($$=\vert\alpha\vert^2+\sinh^{2}r$$)이 매우 클 때, 위상값 추정에 대한 QCRB는 다음과 같이 근사적으로 주어진다 <ref name = "Mach-Zehnder Interferometry at the Heisenberg Limit with Coherent and Squeezed-Vacuum Light">L. Pezzé and A. Smerzi, Mach-Zehnder Interferometry at the Heisenberg Limit with Coherent and Squeezed-Vacuum Light, Physical Review Letters '''100''', 073601 (2008). doi:[https://doi.org/10.1103/PhysRevLett.100.073601 10.1103/PhysRevLett.100.073601].</ref>. \[\Delta \phi \approx \frac{1}{\sqrt{\nu}N}\] 이 계측 오차는 하이젠베르크 스케일링($$N^{-1}$$)을 따르고, 고전 빛만 사용하는 경우보다 $$\sqrt{N}$$배 더 정밀한 계측이 가능함을 뜻한다. 한편 결맞음 상태와 조임 상태의 빛의 밝기가 많이 차이나는 경우($$\vert\alpha\vert^2 \gg \sinh^{2}r $$ 혹은 $$\vert\alpha\vert^2 \ll \sinh^{2}r $$인 경우), 위상 값 추정에 대한 QCRB는 다음과 같다 <ref name = "Mach-Zehnder Interferometry at the Heisenberg Limit with Coherent and Squeezed-Vacuum Light"></ref>. \[\Delta \phi \approx \frac{e^{-r}}{\sqrt{\nu N}}\] 이 계측 오차는 하이젠베르크 스케일링을 따르지는 않지만, 분모에 있는 $$e^{-r}$$에 의해서 표준 양자 한계보다 더 정밀한 계측이 여전히 가능함을 보여준다. 위에서 소개한 결맞음 상태와 조임 상태를 사용하는 방법 외에도, 간섭계에서 표준 양자 한계 $$\Delta \phi_{\text{SQL}}$$를 뛰어넘을 수 있는 다양한 양자 계측 방법들이 연구되었다 <ref name = "Photonic quantum metrology">E. Polino, M. Valeri, N. Spagnolo, and F. Sciarrino, Photonic quantum metrology, AVS Quantum Science '''2''', 024703 (2020). doi:[https://doi.org/10.1116/5.0007577 10.1116/5.0007577].</ref>. 그중에서 가장 대표적인 방법은 N00N 상태를 계측 대상(예: 두개의 위상 변환기)에 바로 통과시키는 방법이다. 이때 변환된 N00N 상태는 (물리적으로 의미가 없는 global phase를 빼고 나면) 아래와 같이 적을 수 있는데, \[\vert N00N \rangle = \frac{1}{\sqrt{2}} \left(\vert N0 \rangle + e^{iN \phi}\vert 0N \rangle \right) \] 여기서 $$e^{iN \phi}$$는 NOON 상태가 결맞음 상태(참고: $$\vert \alpha e^{i \phi} \rangle$$)보다 위상 변화 $$\phi$$에 $$N$$배 민감하게 반응함을 의미하고, 이를 초 분해능(super-resolution)이라 부른다 <ref name = "Time-Reversal and Super-Resolving Phase Measurements">K. J. Resch ''et al.'', Time-Reversal and Super-Resolving Phase Measurements, Physical Review Letters '''98''', 223601 (2007). doi:[https://doi.org/10.1103/PhysRevLett.98.223601 10.1103/PhysRevLett.98.223601].</ref>. Super-resolution 효과를 실험적으로 측정하기 위해서는 위 상태를 50:50 빔 분할기로 간섭시킨 후에 측정하면 된다. NOON 상태는 두 모드 간에 발생하는 위상차를 가장 잘 계측할 수 있는 양자 상태로 알려져 있으며, 위상 계측 오차 $$\Delta \phi$$ 역시 하이젠베르크 스케일링($$N^{-1}$$)을 따른다 <ref name = "A quantum Rosetta stone for interferometry">H. Lee, P. Kok and J. P. Dowling, A quantum Rosetta stone for interferometry, Journal of Modern Optics '''49''', 2325 (2010). doi:[https://doi.org/10.1080/0950034021000011536 10.1080/0950034021000011536].</ref><ref name = "Quantum optical metrology – the lowdown on high-N00N states">J. P. Dowling, Quantum optical metrology – the lowdown on high-N00N states, Contemporary Physics '''49''', 125 (2008). doi:[https://doi.org/10.1080/00107510802091298 10.1080/00107510802091298].</ref>. 흥미롭게도, 마흐-젠더 간섭계에서 결맞음 상태와 조임 상태가 첫 번째 빔 분할기를 통과하면, (적절한 조건하에서) 근사적인 NOON 상태가 만들어진다 <ref name = "High-NOON States by Mixing Quantum and Classical Light">I. Afek, O. Ambar and Y. Silberberg , High-NOON States by Mixing Quantum and Classical Light, Science '''328''', 879 (2010). doi:[https://doi.org/10.1126/science.1188172 10.1126/science.1188172 ].</ref><ref name = "Mach-Zehnder Interferometry at the Heisenberg Limit with Coherent and Squeezed-Vacuum Light"></ref>. 이러한 특성을, 결맞음 상태와 조임 상태를 마흐-젠더 간섭계에 사용했을 때, 위상 계측 오차 $$\Delta \phi$$가 하이젠베르크 스케일링을 따르는 이유로 이해할 수 있다. NOON 상태를 사용하는 양자 계측 방법은 다양한 실험에서 활용되었다. 혈청 알부민 단백질 수용액의 농도를 간섭계를 통해 측정하거나 <ref name = "Measuring protein concentration with entangled photons ">[A. Crespi ''et al.'', Measuring protein concentration with entangled photons, Applied Physics Letters '''100''', 233704 (2012). doi:[https://doi.org/10.1063/1.4724105 10.1063/1.4724105 ].</ref>, 원자 스핀 앙상블(atomic spin ensemble)에서 발생되는 패러데이 회전(Faraday rotation)을 측정할 때 <ref name = "Entanglement-enhanced probing of a delicate material system">F. Wolfgramm ''et al.'', Entanglement-enhanced probing of a delicate material system, Nature Photonics '''7''', 28 (2013). doi:[https://doi.org/10.1038/nphoton.2012.300 10.1038/nphoton.2012.300].</ref> NOON 상태가 사용되었다. 그리고 다중모드(multimode) 편광-얽힘(polarization-entanglement) NOON 상태를 사용해서 카이럴 매질에서 발생하는 광학 회전 분산(optical rotatory dispersion)을 측정한 적도 있다 <ref name = "Quantum optical rotatory dispersion">N. Tischler, Quantum optical rotatory dispersion, SCIENCE ADVANCES '''2''', e1601306 (2016). doi:[https://doi.org/DOI: 10.1126/sciadv.1601306 DOI: 10.1126/sciadv.1601306].</ref>. 최근에는 여러 위상값들로 정의된 함숫값을 계측하는 방법들이 많이 연구되고 있다 <ref name = "Multiparameter Estimation in Networked Quantum Sensors">T. J. Proctor, P. A. Knott, and J. A. Dunningham, Multiparameter Estimation in Networked Quantum Sensors, Physical Review Letters '''120''', 080501 (2018). doi:[https://doi.org/10.1103/PhysRevLett.120.080501 10.1103/PhysRevLett.120.080501].</ref><ref name = "Distributed Quantum Metrology with Linear Networks and Separable Inputs">W. Ge ''et al.'', Distributed Quantum Metrology with Linear Networks and Separable Inputs, Physical Review Letters '''121''', 043604 (2018). doi:[https://doi.org/10.1103/PhysRevLett.121.043604 10.1103/PhysRevLett.121.043604].</ref>. 그 중에서 가우시안(Gaussian) 상태를 사용하는 이론연구 <ref name = "Optimal distributed quantum sensing using Gaussian states">C. Oh, C. Lee, S. H. Lie, and H. Jeong, Optimal distributed quantum sensing using Gaussian states, Physical Review Research '''2''', 023030 (2020). doi:[https://doi.org/10.1103/PhysRevResearch.2.023030 10.1103/PhysRevResearch.2.023030].</ref><ref name = "Distributed quantum phase sensing for arbitrary positive and negative weights">C. Oh, L. Jiang, C. Lee, Distributed quantum phase sensing for arbitrary positive and negative weights, [https://arxiv.org/abs/2108.04119 arXiv:2108.04119].</ref>와 실험연구 <ref name = "Distributed quantum sensing in a continuous-variable entangled network">X. Guo ''et al.'', Distributed quantum sensing in a continuous-variable entangled network, Nature Physics '''16''', 281 (2020). doi:[https://doi.org/10.1038/s41567-019-0743-x 10.1038/s41567-019-0743-x].</ref><ref name = "Demonstration of a Reconfigurable Entangled Radio-Frequency Photonic Sensor Network">Y. Xia ''et al.'', Demonstration of a Reconfigurable Entangled Radio-Frequency Photonic Sensor Network, Physical Review Letters '''124''', 150502 (2020). doi:[https://doi.org/10.1103/PhysRevLett.124.150502 10.1103/PhysRevLett.124.150502].</ref>가 활발히 진행중이다.
요약:
한국양자정보학회 위키에서의 모든 기여는 다른 기여자가 편집, 수정, 삭제할 수 있다는 점을 유의해 주세요. 만약 여기에 동의하지 않는다면, 문서를 저장하지 말아 주세요.
또한, 직접 작성했거나 퍼블릭 도메인과 같은 자유 문서에서 가져왔다는 것을 보증해야 합니다(자세한 사항은
한국양자정보학회 위키:저작권
문서를 보세요).
저작권이 있는 내용을 허가 없이 저장하지 마세요!
취소
편집 도움말
(새 창에서 열림)
둘러보기 메뉴
개인 도구
로그인하지 않음
토론
기여
계정 만들기
로그인
이름공간
문서
토론
한국어
보기
읽기
편집
역사 보기
더 보기
검색
둘러보기
대문
최근 바뀜
임의의 문서로
미디어위키 도움말
도구
여기를 가리키는 문서
가리키는 글의 최근 바뀜
특수 문서 목록
문서 정보