양자 알고리듬 (Quantum Algorithm)
편집하기 (부분)
둘러보기로 이동
검색으로 이동
경고:
로그인하지 않았습니다. 편집을 하면 IP 주소가 공개되게 됩니다.
로그인
하거나
계정을 생성하면
편집자가 사용자 이름으로 기록되고, 다른 장점도 있습니다.
스팸 방지 검사입니다. 이것을 입력하지
마세요
!
= 양자 기계 학습 (Quantum Machine Learning) = 양자 이점을 기계 학습에 적용하려는 노력은 최근 부상하고 있으나 현재 기반이 되는 하드웨어의 부재로 인해 이론적인 연구로서만 존재하고 있다. 어떠한 알고리듬이 실제로 구현 가능할 것인지는 아직 명확하지 않으며 본문에서는 제안된 몇 가지 알고리듬을 소개하고자 한다. * 양자 진폭 시뮬레이션 (Quantum Amplitude Simulation) 고전 컴퓨터에 작동하는 기계 학습 알고리듬을 양자 컴퓨터로 효율적으로 시뮬레이션하면서 이점을 얻으려는 시도로서 대표적으로 행렬계산을 효율적으로 수행함을 목표로 한다. $$n$$개의 큐비트는 $$2^{n}$$개의 상태를 저장할 수 있기 때문에 [[큐비트]] 개수에 대해 다항시간의 시간 복잡도를 가진 알고리듬을 사용하여 기계 학습에 사용되는 계산을 수행할 수 있다면 지수적인 시간 복잡도 상승을 얻을 수 있다. 예를 들어 HHL 알고리듬은 특정 조건을 만족하는 행렬의 역행렬 계산을 행렬의 차원의 로그에 해당하는 복잡도로 수행할 수 있다.<ref name=Harrow>A. Harrow, Quantum algorithm for solving linear systems of equations, in ''Proceedings of APS March Meeting 2010 '' '''55''', 2 (2010).</ref> 이는 고전 컴퓨터 알고리듬의 $$O(n^{2})$$의 복잡도에 비해 지수적인 속도상승을 보여준다. 현재 시뮬레이션 수행의 가장 큰 난관은 데이터를 양자 상태로 변환하는 것으로 아직 일반적인 데이터를 변환할 때 $$O( n^{2})$$ 이상의 시간 복잡도가 필요하므로 실제적인 이점을 얻기 위해서는 해당 부분에서 새로운 알고리듬이 고안되어야 할 것이다. * 그로버 알고리듬 기반 기계 학습 그로버 알고리듬은 $$N$$개의 원소 중 조건을 만족하는 원소를 고전 알고리듬에 비해 제곱배로 빠르게 찾아낼 수 있으므로 $$k$$-median 이나 $$k$$-nearest neighbor 와 같은 문제를 방대한 데이터셋에서 빠르게 찾아낼 수 있을 것으로 기대된다.<ref name=Aïmeur>E. Aïmeur, G. Brassard, and S. Gambs, Quantum speed-up for unsupervised learning, Machine Learning '''90''', 261 (2013). doi:[https://doi.org/10.1007/s10994-012-5316-5 10.1007/s10994-012-5316-5].</ref><ref name=Wiebe>N. Wiebe, A. Kapoor, and K. Svore, Quantum algorithms for nearest-neighbor methods for supervised and unsupervised learning, arXiv:[https://arxiv.org/abs/1401.2142 1401.2142].</ref> * 양자 신경망 (Quantum Neural Network) 고전 신경망을 양자 컴퓨터로 구현하여 양자역학적 효과를 학습 알고리듬으로 사용하는 것을 목적으로 한다. 퍼셉트론(perceptron)을 양자 컴퓨터로 구현하기위해 입출력간 비선형성을 가진 회로를 구현하는 연구가 활발히 진행중이다.<ref name=Gupta>S. Gupta and R. K. P. Zia, Quantum neural networks, Journal of Computer and System Sciences '''63''', 355 (2001). doi:[https://doi.org/10.1006/jcss.2001.1769 10.1006/jcss.2001.1769].</ref> 다른 접근방식으로 [[그로버 알고리듬]] 기반으로 연관 메모리(associative memory)를 구현하려는 시도가 있다.<ref name=Ventura>D. Ventura and T. Martinez, Quantum associative memory, Information Sciences '''124''', 273 (2000). doi:[https://doi.org/10.1016/S0020-0255(99)00101-2 10.1016/S0020-0255(99)00101-2].</ref> 즉 입력과 가장 비슷한 메모리를 그로버 알고리듬을 통해 찾아내는 방식으로 작동한다. 이러한 방식은 메모리의 크기가 [[큐비트]]의 개수에 지수적으로 증가하므로 효율적인 저장이 가능하다는 이점을 가지고 있다. 그러나 이 모델의 유용성은 이러한 단순화된 연관 메모리가 실질적인 효용을 가진다는 것을 실증하는데에 있으며 이는 실제 [[양자 컴퓨터]]나 그러한 [[양자 컴퓨터]]를 시뮬레이션 할 수 있는 고전 컴퓨터를 통해서만 입증될 것이다.
요약:
한국양자정보학회 위키에서의 모든 기여는 다른 기여자가 편집, 수정, 삭제할 수 있다는 점을 유의해 주세요. 만약 여기에 동의하지 않는다면, 문서를 저장하지 말아 주세요.
또한, 직접 작성했거나 퍼블릭 도메인과 같은 자유 문서에서 가져왔다는 것을 보증해야 합니다(자세한 사항은
한국양자정보학회 위키:저작권
문서를 보세요).
저작권이 있는 내용을 허가 없이 저장하지 마세요!
취소
편집 도움말
(새 창에서 열림)
둘러보기 메뉴
개인 도구
로그인하지 않음
토론
기여
계정 만들기
로그인
이름공간
문서
토론
한국어
보기
읽기
편집
역사 보기
더 보기
검색
둘러보기
대문
최근 바뀜
임의의 문서로
미디어위키 도움말
도구
여기를 가리키는 문서
가리키는 글의 최근 바뀜
특수 문서 목록
문서 정보