양자 센서 (Quantum Sensor)

한국양자정보학회 위키
Admin (토론 | 기여)님의 2021년 8월 14일 (토) 13:51 판 (새 문서: 양자컴퓨팅 이론 = 양자 센싱 (Quantum Sensing) = 양자 센싱은 다음의 세가지 센싱 방식을 포함한다. 1) 에너지 준위 등 양자화 된 물리...)
(차이) ← 이전 판 | 최신판 (차이) | 다음 판 → (차이)
둘러보기로 이동 검색으로 이동

양자컴퓨팅 이론


양자 센싱 (Quantum Sensing)

양자 센싱은 다음의 세가지 센싱 방식을 포함한다. 1) 에너지 준위 등 양자화 된 물리량을이용해 물리적인 값을 측정한다. 2) 양자 결맞음을 이용하여 물리적인 값을 측정한다. 3) 양자 얽힘 등의 성질을 이용해 고전 센싱보다 민감도와 정확도를 올려준다 (Degen, 2017)[1].


양자 센서는 다음 4가지 조건을 만족해야 한다 (DiVincenzo, 2000). 1) 양자 시스템의 에너지 준위가 양자화 되어 있으며 2) 특정 상태로 만들거나 읽을 수 있어야 하며 3) 일관되게 조작할 수 있어야 하며 4) 전기장이나 자기장과 같은 물리적인 조건과 상호작용을 할 수 있어야 한다.


양자 센서에 대한 해밀토니안은 다음과 같이 나타낼 수 있다.


\[H(t)= H_{0} + H_{V}(t) + H_{\text{control}}(t)\]


$$H_{0}$$는 원래 시스템이 가지고 있는 해밀토니안이고 이를 알고 있다고 가정한다. $$H_{\text{control}}(t)$$는 양자 센서 조작을 위한 해밀토니안이다. 궁극적으로 센싱 Hamiltonain $$H_{V}(t)$$을 통해 포텐셜 $$V(t)$$를 검출하는 것이 양자 센서의 목표이다. 이를 도출하기 위한 일반화된 센싱 프로토콜은 다음과 같다.


1) 센서를 $$\left| \left. \ 0 \right\rangle \right.\ $$으로 초기화를 해준다.


2) 해밀토니안 조작을 통해 $$H_{\text{control}}\left( t_{0} \right)$$을 합당한 시간동안 켰다 꺼서, 시간 변화 유니테리 연산이 수행되어 원하는 상태로 준비한다. 즉, $$\left| \left. \ \psi_{0} \right\rangle \right.\= U(t)\left| \left. \ 0 \right\rangle \right.\ .$$


3) 양자 센서를 특정 시간 $$t$$동안 센싱하도록 킨다. 이에 따라 센싱 해밀토니안 $$H_{V}(t)$$에 의한 시간 변화 유니테리 연산이 수행되며 센서의 상태는 $$\left| \left. \ \psi(t) \right\rangle \right.\= c_{0}\left| \left. \ \psi_{0} \right\rangle \right.\ + c_{1}\left| \left. \ \psi_{1} \right\rangle \right.\ $$ 이 된다.


4) 2)번에서 수행한 유니테리 연산($$U(t)$$)을 역으로 되돌려, 즉 $$\left| 0 \right\rangle ='"`UNIQ--h-1--QINU`"' U^{\dagger}(t)\left| \psi_{0} \right\rangle$$ 그리고 $$\left| 1 \right\rangle = U^{\dagger}(t)\left| \psi_{1} \right\rangle$$로 되돌려준다. 그러면, $$U^{\dagger}(t)\left| \left. \ \psi(t) \right\rangle \right.\= c_{0}^{'}\left| \left. \ 0 \right\rangle \right.\ + c_{1}^{'}\left| \left. \ 1 \right\rangle \right.\ $$ 상태가 된다.


5) 측정기저 $$\left| 0 \right\rangle$$과 $$\left| 1 \right\rangle$$로 측정을 수행하고 그 결과를 기록한다.


6) 1)~5)을 N번 반복하여 베르누이 과정을 통해 전이 확률을 추정할 수 있다.


7) 시간에 따른 전이 확률을 통해 원하는 신호를 추론할 수 있다.


다음은 정적인 신호를 측정하는 대표적인 방법인 라비 측정(Rabi measurement)과 람지 측정(Ramsey measurement) 두 가지와 동적인 신호를 측정하는 동적 디커플링, 그리고 양자 센서가 가지는 내재적인 요인들을 소개한다.

라비 측정 (Rabi Measurement)

첫 번째 예제인 라비 측정은 다음과 같은 프로토콜을 따른다. 1) 양자 센서를 초기화 한다. 즉, 양자 상태 $$\left| 0 \right\rangle$$에 있도록 준비한다. 라비 측정의 경우 특정 상태를 만들 필요는 없기에 과정 2) 와 4)는 생략한다. 3) t초 동안 외부 포텐셜 해밀토니안 $$H_{V}(t)$$을 켜준다. 5) 측정을 통해 전이 확률 $$p ='"`UNIQ--h-3--QINU`"' \left| c_{1}^{'} \right|^{2}$$를 구한다. 이때 $$p = \frac{w_{1}^{2}}{w_{1}^{2} + w_{0}^{2}}{\ \sin^{2}}\left( \sqrt{w_{1}^{2} + w_{0}^{2}t} \right)$$임이 알려져 있다 (Sakurai and Napolitano, 2011). 이를 통해 전이 포텐셜의 정보와 공명 주파수를 알 수 있다.

람지 측정 (Ramsey Measurement)

두 번째 예제인 람지 측정은 다음과 같은 프로토콜을 따른다. 1) 양자 센서를 초기화 한다. 2) $$\frac{\pi}{2}$$ pulse를 가해서 양자 상태 $$\left| \psi_{0} \right\rangle$$에 있도록 준비한다. 3) t초 동안 외부 포텐셜을 제거한 $$H_{0}$$ 해밀토니안을 가한다. 4) 다시 $$\frac{\pi}{2}$$를 가한다. 5) 측정을 한다. 이 때 전이 확률은 $$p= \frac{1}{2}\left\lbrack 1 - \cos\left( w_{0}t \right) \right\rbrack$$이다. 이 과정들을 반복하여 전이 확률을 구하면 역으로 두 상태의 에너지 차이인 $$w_{0}$$를 알 수 있다.


위의 과정을 이용하면 외부의 신호를 측정할 수 있다. 외부 신호 검출은 전이 확률의 변화를 통해 이루어진다. 그림 1.7‑1 는 전이 확률과 포텐셜 변화이 보이는 관계의 예시이다. 확률 변화가 가장 크게 일어나는 곳은 전이 확률이 0.5일 때이므로 이 때를 기준으로 잡아 전이 확률의 변화량을 측정함으로써 포텐셜의 변화량을 측정할 수 있으며 이 경우를 경사 측정이라 한다. 다음은 포텐셜 변화량 $$\delta V$$에 따른 전이 확률 변화 $$\delta p$$에 대한 식이다.


\[\delta p= - \frac{1}{2}\cos\left( w_{0}t + \text{γδ}\text{Vt} \right) \sim \frac{1}{2}\text{γδ}\text{Vt}\]


하지만 포텐셜이 주기적으로 또는 랜덤하게 변해서 변화량의 평균이 0이라면 경사 측정으로는 구별할 수 없을 것이다. 이 경우에는 분산 측정을 이용해야 한다. 분산 측정의 경우 그림 1.7‑2과 같이 기울기가 0에 가까운 점에서 평균값을 구한다. 그러면 전이 확률의 차이는 0이 되지 않는다. 또한 전이 확률이 0 근처에서 전이 확률은 포텐셜의 제곱에 비례하므로 $$\left\langle \delta V^{2} \right\rangle= V_{\text{rms}}^{2}$$ (Merils, 2010)를 이용하면 전이 확률이 0인 점을 기준으로 $$V_{\text{rms}}$$를 얻을 수 있을 것이다.


\[\delta p= \left\langle \frac{1}{2}\left( 1 - \cos\left( w_{0}t + \gamma\delta Vt \right) \right) \right\rangle \sim \frac{1}{4}\gamma^{2}V_{\text{rms}}^{2}t^{2}\]


그림 ‑ 외부 포텐셜과 전이 확률의 모식도. 빨간색 점은 전이 확률 0.5에서 경사 측정시 $$\text{δp}$$의 값을 보여주며 파란색 점은 전이 확률 0에서 분산 측정시 $$\text{δp}$$의 값을 보여준다 (Degen, 2017)[1].

노이즈 (Noise)

측정 값에는 항상 노이즈가 발생할 수 있기 때문에 시스템에서 발생할 수 있는 노이즈가 무엇이 있는지 아는 것은 중요하다. 또한 궁극적으로 노이즈 정보를 통해 SNR (Signal to Noise Ratio)과 이를 통해 시스템의 민감도를 정량적으로 표현하는 최소 측정 가능한 신호를 구할 수 있을 것이다. 다음은 발생할 수 있는 네 가지 대표적인 노이즈 발생 요인들이다.


첫째는 가장 큰 요인 중 하나는 양자 투영 노이즈이다. 양자 시스템은 전이 확률을 구할 때 N번 반복하여 통계를 낸다. 이때 통계를 내는 과정에서 표본 개수 $$N$$이 무한이 아닌 유한이기 때문에 통계 요동(statistical fluctuation)이 발생하고 이에 따라 노이즈가 뒤따라온다. 이항 분포에 따르면 분산 $$\sigma^{2} ='"`UNIQ--h-6--QINU`"' \frac{1}{N}p(1 - p)$$ 만큼의 통계적인 노이즈가 발생한다. 예를 들어 람지 선형 측정에서는 $$p = 0.5$$이기에 $$\sigma^{2}= \frac{1}{4N}$$ 만큼의 노이즈가 발생한다.


두번째는 측정 시간 동안 발생하는 결어긋남(decoherence)와 이완(relaxation)이다. 이 둘은 무작위로 위상과 상태를 변화시킴으로써 노이즈가 생성된다. 따라서 이전에 측정했던 전이 시간 차이가 시간에 따라 지수적으로 감소한다.


\[\delta p_{\text{obs}}= \delta p(t)e^{- \chi(t)}\]


세번째로는 상태의 초기화와 큐비트 조작에 의한 노이즈이다. 완벽하게 초기화와 큐비트 조작이 어렵기 때문에 발생할 수 있는 노이즈이다. 하지만 결어긋남과는 다르게 측정시간에는 무관하다는 특징을 가진다.


\[\delta p_{\text{obs}}= \beta\delta p\]


마지막은 측정 도중 발생하는 에러이다. 결과값에 측정된 노이즈에 따라 크게 단일샷 방법과 평균 측정 방법이 있다 (Degen, 2017)[1]. 단일샷 방법은 그림 1.7‑2 (b)와 같이 측정값이 두 값으로 구분할 수 있을 만큼 서로 몰려 있어 기준값을 잡아 결과값을 구분 짓는다. 그림 1.7‑2 (a)와 같이 이상적인 경우와 비교했을 때 겹치는 부분이 생길 수 있어 이에 따른 측정 노이즈가 발생할 수 있다. $$\kappa_{i}$$는 기준값을 잡아 측정했을 때 부분적으로 포함되지 않는 영역을 의미한다.


<math display="block">\sigma_{\text{read}}^{2}= \frac{1}{N}\lbrack\kappa_{0}\left( 1 - \kappa_{0} \right)p + \kappa_{1}(1 - \kappa_{1})(1 - p)\rbrack

</math>


<math display="block">\sigma_{\text{read}}^{2}\sim\frac{\kappa}{N}

</math>


\[p= \frac{x - x_{|0 >}}{x_{|1 >} - x_{|0 >}}\]


\[\sigma_{\text{read}}^{2} ='"`UNIQ--h-7--QINU`"' \frac{R^{2}}{4N},\ R = \frac{2\sqrt{N}\sigma_{x}}{|x_{|1 >} - x_{|0 >}|}\]


그림 ‑ (a) 이상적인 측정인 경우 두 값만이 히스토그램에 나타난다. (b) 싱글샷을 사용하는 경우 기준값 부근에 겹치는 영역이 노이즈가 된다. (c) 첨두치가 하나가 나오는 경우 평균측정법을 이용해 전이확률을 구한다 (Degen, 2017)[1].

민감도 (Sensitivity)

시스템의 민감도란 특정 SNR을 갖는 특정 출력 신호를 생성하는데 필요한 최소 입력 신호를 의미한다. 양자 센싱에서 SNR(Signal to Noise Ratio)는 아래와 같이 정의되며 노이즈에서 얻었던 값을 대입해보면 다음과 같다.


\[SNR ='"`UNIQ--h-9--QINU`"' \frac{\delta p_{\text{obs}}}{\sigma} = \delta p(t)e^{- \chi(t)}2C\sqrt{N}\]


람지 측정의 결과를 보면 $$\delta p= \left( \gamma\text{δV}_{\text{rms}} \right)^{q}$$이며 $$q$$에 따라 경사 측정, 분산 측정이 나눠진다. 또한 측정 횟수를 의미하는 $$N$$은 전체 시간 $$T$$에서 측정과 준비를 포함한 시간으로 나눈 것이므로 $$\frac{T}{t + t_{m}}$$과 같다. 이를 종합해 보면 아래와 같다.


\[SNR= \left( \text{γtδV} \right)^{q}e^{- \chi(t)}2C\sqrt{\frac{T}{t + t_{m}}}\]


$$\ T= 1$$초동안 단위 SNR에서 최소 측정 가능한 신호는 아래와 같이 쓸 수 있다.


\[v_{\min}^{q} \propto \frac{e^{\chi(t)}\sqrt{t + t_{m}}}{2C(t_{m})\gamma^{q}t^{q}}\]


이 결과를 통해 민감도가 좋은 센서는 다음 조건을 만족해야 한다. 측정 시간은 길수록 좋지만 $$e^{\chi(t)}$$값이 급격히 증가하는 값인 $$e^{\chi(t)}$$의 시간 상수 보다 커지면 안된다. 둘째로 측정 효율 $$C(t_{m})$$은 측정 시간($$t_{m}$$)과 연관되며 측정 효율에 따라 최적의 측정시간을 정할 수 있다. 마지막으로 측정 효율은 실험을 최적화하거나 다른 양자 센싱에 따라 증가될 수 있다.

동적 디커플링 (Dynamical Decoupling)

지금까지는 시간 변화가 없는 정적인 신호에 대한 측정이었지만 시간에 의존적인 신호 역시 측정할 수 있다. 신호가 아래와 같은 신호라 가정하겠다. 이러한 신호의 측정은 람지 위상이라는 것을 이용해 측정한다.


\[V\left( t^{'} \right)= V_{\text{pk}}\cos\left( 2\pi f_{\text{ac}}t^{'} + \alpha \right)\]


\[\phi= \int_{0}^{t}{\gamma V(t')dt'}\]


람지 측정의 경우 느리게 변화하는 경우 람지 위상 정보가 남아 있을 수 있다. 하지만 빠르게 변화하는 신호의 경우 위상이 상쇄 간섭에 의해 평균을 취하면 위상 정보가 0에 가까워진다. 또는 측정시간동안 진동의 주기만큼 지난다면 람지 위상은 0이 될 것이다. 다른 시도로는 람지 측정 도중에 $$\pi$$펄스파를 넣어보는 것이다. 그림 ‑3 (b) 과 같이 $$\pi$$ 펄스파를 측정 시간의 정중앙에 두는 과정을 스핀 에코 시퀀스라 하며, 이 경우에는 람지 위상은 $$\phi= \frac{2}{\pi}\gamma V_{\text{pk}}t\cos\alpha$$ 이다. 여기서 아이디어를 착안하여 다중 펄스를 이용하면 더 많은 정보를 알아낼 수 있다. 다중 펄스를 이용했을 때 람지 위상은 다음과 같이 표현할 수 있다. 이 때 $$W$$는 펄스의 배치에 따라 바뀌는 가중치함수이다.


\[\phi= \gamma V_{\text{pk}}tW(f_{\text{ac}},\alpha)\]


다중 펄스 시퀀스의 대표적인 예는 CP(Carr-Purcell)학습과 PDD(Periodic Dynamic Decoupling)이다. CP학습은 그림 1.7‑3 (c) 과 같이 같이 $$t_{j} ='"`UNIQ--h-11--QINU`"' \frac{2j - 1}{2}$$에 펄스파를 두는 방법이고 PDD 방식은 그림 1.7‑3 (d) 과 같이 $$t_{j} = \text{jτ}$$에 펄스파를 두는 방법이다. 이 두가지 방법의 장점은 파라미터를 조정할 수 있다는 점이다. 또한 신호의 주파수, 결어긋남, $$T_{1}$$, $$T_{2}$$ 이완 등 다양한 정보를 얻을 수 있다. 이 때 전이 확률을 구하면 아래와 같다.


\[p= \frac{1}{2}\lbrack 1 - cos(\frac{\gamma V_{\text{pk}}t\cos\alpha}{\text{kπ}}\ )\rbrack\]


그림 ‑ (a) 람지 측정의 펄스 시퀀스. (b) 스핀 에코의 펄스 시퀀스 (c) CP학습의 펄스 시퀀스 (d) PDD의 펄스 시퀀스 (Degen, 2017)[1].

참고 문헌

Degen, C. L., Reinhard, F., Cappellaro, P. (2017), “Quantum sensing”, Reviews of Modern Physics, 89(3) : 035002.


DiVinceenzo, D. P. (2000), “The physical implementation of quantum computation”, Fortschritte der Physik: Progress of Physics, 48(9-11) : 771.


Ramsey, N. F. (1950), “A molecular beam resonance method with separated oscillating fields”, Physical Review, 78(6), 695.


Meriles, C. A., Jiang, L., Goldstein, G., Hodges, J. S., Maze, J., Lukin, M. D., & Cappellaro, P. (2010), “Imaging mesoscopic nuclear spin noise with a diamond magnetometer”, The Journal of Chemical Physics, 133(12) : 124105.


Sakurai, J.J., & Napolitano, J. (1994), Modern Quantum Mechanics, Addison-Wesley. Reading, Massachusetts.



참고 문헌

  1. 1.0 1.1 1.2 1.3 1.4 Degen, C. L., Reinhard, F., Cappellaro, P. (2017), “Quantum sensing”, Reviews of Modern Physics, 89(3) : 035002.